Назад

Купить и читать книгу за 29 руб.

Вы читаете ознакомительный отрывок. Если книга вам понравилась, вы можете купить полную версию и продолжить читать

Электрическая сварка плавлением

   В книге изложены основы теории сварки, устройство и правила эксплуатации оборудования для ручной дуговой и газовой сварки и наплавки металлов, контактной сварки, сварки в защитных газах и под флюсом, рассмотрены специальные и перспективные виды сварки, механизация и автоматизация сварочного производства. Учебник может быть использован также для профессионального обучения рабочих на производстве.


Илья Мельников Электрическая сварка плавлением

ДУГОВАЯ СВАРКА

   Тип сварки определяется видом используемого для плавления источника теплоты – дуговая сварка осуществляется теплотой электрической дуги.
   Дуговой сваркой называется сварка плавлением, при которой нагрев свариваемых кромок осуществляется теплотой электрической дуги. Дуговая сварка классифицируется по следующим признакам:
   – виду электрода (плавящийся и неплавящийся);
   – по виду дуги (свободной или сжатой дугой);
   – по характеру воздействия дуги на основной металл (дугой прямого или косвенного действия, трехфазной дугой).
   Плавящиеся электроды подразделяются на штучные, проволочные и ленточные. Они применяются как сплошного сечения, так и порошковые. Неплавящиеся электроды подразделяются на вольфрамовые, угольные и графитовые. Дуговую сварку производят постоянным током прямой и обратной полярности, переменным током как промышленной, так и повышенной частоты и пульсирующим током. При этом сварка может быть выполнена как одно-, двух– и многодуговая (с раздельным питанием каждой дуги), так и одно-, двух– и многоэлектродная (с общим подводом сварочного тока).
   Ручная дуговая сварка может производиться неплавящимся и плавящимся электродами. Первый способ осуществляют следующим образом. Свариваемые кромки изделия приводят в соприкосновение. Между неплавящимся (угольным, графитовым) электродом и изделием возбуждают дугу. Кромки изделия и вводимый в зону дуги присадочный материал нагреваются до плавления и образуется ванночка расплавленного металла. После затвердения металл ванночки образует сварной шов. Этот способ используется при сварке цветных металлов и их сплавов, а также при наплавке твердых сплавов. Второй способ, выполняемый плавящимся электродом, является основным при ручной дуговой сварке. Электрическая дуга возбуждается между металлическим электродом и свариваемыми кромками изделия. Теплота дуги расплавляет электрод и кромки изделия. Получается общая ванна расплавленного металла, которая, охлаждаясь, образует сварной шов.
   Автоматическая и полуавтоматическая сварка под флюсом выполняется путем механизации основных движений, выполняемых сварщиком при ручной сварке – подачи электрода вдоль ее оси в зону дуги и перемещения его вдоль свариваемых кромок изделия. При полуавтоматической сварке механизирована подача электрода в зону дуги, а перемещение электрода вдоль свариваемых кромок производит сварщик вручную. При автоматической сварке механизированы все операции, необходимые для процесса сварки. Жидкий металл сварочной ванны защищают от воздействия кислорода и азота воздуха расплавленным шлаком, образованным от плавления флюса, подаваемого в зону дуги. После затвердевания металла сварочной ванны образуется сварной шов.
   Дуговая сварка в защитном газе выполняется неплавящимся (вольфрамовым) или плавящимся электродом. В первом случае сварной шов формируется за счет металла расплавляемых кромок изделия. При необходимости в зону дуги подается присадочный металл. В этом случае подаваемая в зону дуги электродная проволока расплавляется и участвует в образовании сварного шва. Защиту расплавленного металла от окисления и азотирования осуществляют струей защитного газа, оттесняющего атмосферный воздух из зоны дуги.
   Электрошлаковая сварка осуществляется путем сплавления металла свариваемых кромок изделия и электрода теплотой, выделяемой током при прохождении через расплавленный шлак. Кроме того, шлак защищает расплавленный металл от воздействия воздуха. Формирование сварного шва осуществляется с помощью движущихся вдоль кромок медных ползунов с водяным охлаждением.

ОСОБЫЕ ВИДЫ СВАРКИ

   Наиболее часто применяются следующие виды сварки.
   Электронно-лучевая сварка осуществляется путем использования кинетической энергии концентрированного потока электронов, движущихся с большой скоростью в вакууме. Высокий вакуум в сварочной камере значительно снижает потери кинетической энергии электронов и обеспечивает химическую и тепловую защиту катода и свариваемого изделия. Раскаленный вольфрамовый катод, размещенный в фокусирующей головке, излучает поток электронов. Под действием высокого напряжения (30-100) кВ между катодом и ускоряющим электродом (анодом) поток электронов приобретает значительную кинетическую энергию. Магнитной линзой поток электронов фокусируется в узкий луч, который с помощью магнитной отклоняющей системы направляется точно на свариваемые кромки изделия. Питание установки осуществляется высоковольтным источником постоянного тока.
   Плазменная сварка – сварка плавлением, при которой нагрев производится сжатой дугой. Основана на использовании струи ионизированного газа – плазмы, содержащего электрически заряженные частицы и способного проводить ток. Различают плазменную струю прямого и косвенного действий. Плазмообразующий газ (аргон, азот, водород), подаваемый в сопло плазмотрона, сжимает столб дуги, горящей между вольфрамовым электродом и свариваемым изделием. Происходит значительное повышение температуры столба дуги и ионизация плазмообразующего газа.
   Струей нагретого до 10000-20000 К и ионизированного газа – плазмы – сваривают самые различные тугоплавкие сплавы, металлы и неметаллические материалы, в том числе и неэлектропроводные. Энергия дуговой плазменной струи зависит от сварочного тока, напряжения, расхода газа, скорости сварки и других параметров. Источники питания дуги должны иметь рабочее напряжение более 120 В. Плазмообразующий газ служит также защитой расплавленного металла от атмосферного воздуха. Иногда для защиты расплавленного металла подают отдельную струю более дешевого газа, который, имея более низкую температуру, одновременно охлаждает сопло плазмотрона. В некоторых типах плазмотронов применяют водяное охлаждение.
   Лазерная сварка основана на том, что при большом усилении световой луч способен плавить металл. для получения такого луча применяют устройства, называемые лазерами. Схема действия рубинового лазера такова. Искусственный рубиновый кристалл расположен в кварцевой трубке, которая представляет собой спиральную газоразрядную лампу, наполненную газом ксеноном. При замыкании выключателя происходит разряд высоковольтного конденсатора и в кварцевой лампе появляется вспышка света, в результате чего рубиновый кристалл испускает импульс мощного светового луча. Импульсы светового луча фокусируются и напрвляются в зону сварки. Сварка ведется как бы отдельными точками, перекрывающими друг друга.

КОНТРОЛЬНЫЕ ВОПРОСЫ

   1. Что называется дуговой сваркой? 2. По каким признакам классифицируют дуговую сварку? 3. В каких случаях применяют сварку неплавящимся электродом? 4. В чем суть дуговой сварки в защитном газе? 5. Расскажите принцип действия электронно-лучевой сварки? 6. Как осуществляется плазменная сварка? 7. На чем основана лазерная сварка?

СВАРОЧНАЯ ДУГА

ОПРЕДЕЛЕНИЕ И СТРОЕНИЕ ДУГИ. УСЛОВИЯ ЗАЖИГАНИЯ И ГОРЕНИЯ ДУГИ

   Электрическая сварочная дуга – устойчивый электрический разряд в сильно ионизированной смеси газов и паров материалов, используемых при сварке, и характеризуемый высокой плотностью тока и высокой температурой.
   В зависимости от числа электродов и способов включения электродов и свариваемой детали в электрическую цепь различают следующие виды сварочных дуг:
   – прямого действия, когда дуга горит между электродом и изделием;
   – косвенного действия, когда дуга горит между двумя электродами, а свариваемое изделие не включено в электрическую цепь;
   – трехфазную дугу, возбуждаемую между двумя электродами, а также между каждым электродом и основным металлом.
   По роду тока различают дуги, питаемые переменным и постоянным током. При использовании постоянного тока различают сварку на прямой и обратной полярности. В первом случае электрод подключается к отрицательному полюсу и служит катодом, а изделие – к положительному полюсу (анод); во втором случае электрод подключается к положительному полюсу и служит анодом, а изделие – к отрицательному и служит катодом.
   В зависимости от материала электрода различают дуги между неплавящимися электродами (угольными, вольфрамовыми) и плавящимися металлическими электродами.
   Сварочная дуга обладает рядом физических и технологических свойств, от которых зависит эффективность использования дуги при сварке. К физическим относятся электрические, электромагнитные, кинетические, температурные, световые. К технологическим свойствам относятся: мощность дуги, пространственная устойчивость, саморегулирование.
   Электрический разряд в газе – это электрический ток, проходящий через газовую среду благодаря наличию в ней свободных электронов, а также отрицательных и положительных ионов, способных перемещаться между электродами под действием приложенного электрического поля (разности потенциалов между электродами).
   Процесс, при котором из нейтральных атомов и молекул образуются положительные и отрицательные ионы, называется ионизацией. При обычных температурах ионизацию можно вызвать, если уже имеющимся в газе электронам и ионам сообщить при помощи электрического поля большие скорости. Обладая большой энергией, эти частицы могут разбивать нейтральные атомы и молекулы на ионы. Кроме того, ионизацию можно вызвать световыми, ультрафиолетовыми, рентгеновскими лучами, а также излучением радиоактивных веществ.
   В обычных условиях воздух, как и все газы, обладает весьма слабой электропроводностью. Это объясняется малой концентрацией свободных электронов и ионов в газах. Поэтому, чтобы вызвать в газе мощный электрический ток, т. е. образовать электрическую дугу, необходимо ионизировать воздушный промежуток (или другую газообразную среду) между электродами. Ионизацию можно произвести, если приложить к электродам достаточно высокое напряжение, тогда имеющиеся в газе свободные электроны и ионы будут разгоняться электрическим полем и, получив большие энергии, смогут разбить нейтральные молекулы на ионы. Однако при сварке, исходя из правил техники безопасности, нельзя пользоваться высокими напряжениями. Поэтому применяют другой способ. Так как в металлах имеется большая концентрация свободных электронов, то надо извлечь эти электроны из объема металла в газовую среду и затем использовать для ионизации молекул газа. Существует несколько способов извлечения электронов из металлов. Из них для процесса сварки имеют значения два: термоэлектронная и автоэлектронная эмиссии.
   При термоэлектронной эмиссии происходит "испарение" свободных электронов с поверхности металла благодаря высокой температуре. Чем выше температура металла, тем большее число свободных электронов приобретают энергии, достаточные для преодоления "потенциального барьера" в поверхностном слое и выхода из металла.
   При автоэлектронной эмиссии извлечение электронов из металла производится при помощи внешнего электрического поля, которое несколько изменяет потенциальный барьер у поверхности металла и облегчает выход тех электронов, которые внутри металла имеют достаточно большую энергию и могут преодолеть этот барьер.
   Ионизацию, вызванную в некотором объеме газовой среды, принято называть объемной. Объемная ионизация, полученная благодаря нагреванию газа до очень высоких температур, называется термической. При высоких температурах значительная часть молекул газа обладает достаточной энергией для того, чтобы при столкновениях могло произойти разбиение нейтральных молекул на ионы. Кроме того, с повышением температуры увеличивается общее число столкновений между молекулами газа. При очень высоких температурах в процессе ионизации начинает также играть заметную роль излучение газа и раскаленных электродов.
   Ионизация газовой среды характеризуется степенью ионизации, т. е. отношением числа заряженных частиц в данном объеме к первоначальному числу частиц (до начала ионизации). При полной ионизации степень ионизации будет равна единице.
   При температуре 6000-8000 К такие вещества, как калий, натрий, кальций, обладают достаточно высокой степенью ионизации. Пары этих элементов, находясь в дуговом промежутке, обеспечивают легкость возбуждения и устойчивое горение дуги. Это свойство щелочных металлов объясняется тем, что атомы этих металлов обладают малым потенциалом ионизации. Поэтому для повышения устойчивости горения электрической дуги эти вещества вводят в зону дуги в виде электродных покрытий или флюсов.
   Электрическая дуга постоянного тока возбуждается при соприкосновении торца электрода и кромок свариваемой детали. Контакт в начальный момент осуществляется между микровыступами поверхностей электрода и свариваемой детали. Высокая плотность тока способствует мгновенному расплавлению этих выступов и образованию пленки жидкого металла, которая замыкает сварочную цепь на участке "электрод – свариваемая деталь". При последующем отводе электрода от поверхности детали на 2-4 мм пленка жидкого металла растягивается, а сечение уменьшается, вследствие чего возрастает плотность тока и повышается температура металла. Эти явления приводят к разрыву пленки и испарению вскипевшего металла. Возникшие при высокой температуре интенсивные термоэлектронная и автоэлектронная эмиссии обеспечивают ионизацию паров металла и газов межэлектродного промежутка.
   В образовавшейся ионизированной среде возникает электрическая сварочная дуга. Процесс возбуждения дуги кратковременен и осуществляется в течение долей секунды. В установившейся сварочной дуге различают три зоны: катодную, анодную и столба дуги. Катодная зона начинается с раскаленного торца катода, на котором расположено так называемое катодное пятно. Отсюда вылетает поток свободных электронов, осуществляющих ионизацию дугового промежутка. Плотность тока на катодном пятне достигает 60-70 А/мм2. К катоду устремляются потоки положительных ионов, которые бомбардируют и отдают ему свою энергию, вызывая нагрев до температуры 2500-3000 °С.
   Анодная зона расположена у торца положительного электрода, в котором выделяется небольшой участок, называемый анодным пятном. К анодному пятну устремляются и отдают свою энергию потоки электронов, накаляя его до температуры 2500-4000 °С. Столб дуги, расположенный между катодной и анодной зонами, состоит из раскаленных и ионизированных частиц. Температура в этой зоне достигает 6000-7000 °С в зависимости от плотности сварочного тока.
   Для возбуждения дуги в начальный момент необходимо несколько большее напряжение, чем при ее последующем горении. Это объясняется тем, что при возбуждении дуги воздушный зазор недостаточно нагрет, степень ионизации недостаточно высокая и необходимо большее напряжение, способное сообщить свободным электронам достаточно большую энергию, чтобы при их столкновении с атомами газового промежутка могла произойти ионизация. Увеличение концентрации свободных электронов в объеме дуги приводит к интенсивной ионизации дугового промежутка, а отсюда к повышению его электропроводности. Вследствие этого напряжение тока падает до значения, которое необходимо для устойчивого горения дуги.
   Зависимость напряжения дуги от тока в сварочной цепи называют статической вольт-амперной характеристикой дуги.
   Вольт-амперная характеристика дуги имеет три области: падающую, жесткую и возрастающую. В первой (до 100 А) с увеличением тока напряжение значительно уменьшается. Это происходит в связи с тем, что при повышении тока увеличивается поперечное сечение, а следовательно, и проводимость столба дуги. Во второй области (100-1000 А) при увеличении тока напряжение сохраняется постоянным, так как сечение столба дуги и площади анодного и катодного пятен увеличиваются пропорционально току. Область характеризуется постоянством плотности тока. В третьей области увеличение тока вызывает возрастание напряжения вследствие того, что увеличение плотности тока выше определенного значения не сопровождается увеличением катодного пятна ввиду ограниченности сечения электрода. Дуга первой области горит неустойчиво и поэтому имеет ограниченное применение. Дуга второй области горит устойчиво и обеспечивает нормальный процесс сварки.
   Напряжение, необходимое для возбуждения дуги, зависит от рода тока (постоянный или переменный), дугового промежутка, материала электрода и свариваемых кромок, покрытия электродов и ряда других факторов. Значения напряжений, обеспечивающих возникновение дуги в дуговых промежутках, равных 2-4 мм, находятся в пределах 40-70 В. Напряжение для установившейся сварочной дуги по формуле U = a + bl, где а – коэффициент, по своей физической сущности составляющий сумму падений напряжений в зонах катода и анода, В; b – коэффициент, выражающий среднее падение напряжения на единицу длины дуги, В/мм; l – длина дуги, мм.
   
Купить и читать книгу за 29 руб.

Вы читаете ознакомительный отрывок. Если книга вам понравилась, вы можете купить полную версию и продолжить читать