Назад

Купить и читать книгу за 39 руб.

Вы читаете ознакомительный отрывок. Если книга вам понравилась, вы можете купить полную версию и продолжить читать

Приборостроение

   В книге вы найдете информативные ответы на все вопросы курса «Приборостроение» в соответствии с Государственным образовательным стандартом.


М. А. Бабаев Приборостроение

1. Основные понятия и определения

   Невозможно представить себе современную жизнь, идет ли речь о промышленности, других секторах экономики или просто о быте населения, без применения или использования технических приборов.
   За каждым техническим изделием стоит кропотливый труд конструкторских коллективов, отдельных конструкторов.
   Если говорить кратко, то прибор – это механико-техническое устройство для измерения неизвестной величины. Ее нужно сравнивать с неким эталоном. Результаты сравнения и есть измерение неизвестной величины.
   Приборы – это не только технические предметы повседневности, но также и станки с ЧПУ.
   В качестве эталонов имеются в виду измерительные приборы: от гирь, весов, линеек до измерительных приборов с использованием радиоэлектронных компонентов.
   Самыми первыми приборами в истории человечества принято считать гири и часы. Именно им стало возможно дальнейшее совершенствование приборостроения.
   В настоящей книге вниманию читателя предлагаются основы теории вероятности и их прикладное применение в приборостроении, рассматриваются вопросы взаимозаменяемости деталей приборов, их конструкции и расчеты, кратко излагаются вопросы технологии в приборостроении, рассказывается о средствах автоматики.
   Специфика технологии в приборостроении такова, что одни и те же механические, радиоэлектронные части могут применяться в производстве изделий не только одной, но и других серий. Поэтому эти части разрабатываются и выпускаются унифици-рованно, то есть не в расчете на какое-нибудь конкретное изделие; остальное зависит уже от конструктора, конструкторского коллектива, от каждого специалиста, принимавшего участие в проектировании создаваемых на основе этих частей изделий. Какой узел (серийный) и в каких целях использовать – этот вопрос решается еще в процессе проектирования изделий. Потому фактор взаимозаменяемости имеет чрезвычайно важное значение. Но взаимозаменяемость предполагает наличие определенных границ допуска параметров в изготовлении прибора: длина, высота, радиус, угол и т. п. Для наиболее точной реализации этих требований – взаимозаменяемость и допуск – без прикладного применения теории вероятности не обойтись. С ознакомления с этой дисциплиной и начинается данная книга. Роль теории вероятности в истории, науке и производстве велика. Наиболее важные закономерности в тех или других прерывных и непрерывных процессах удается выделить благодаря этой теории. Теория вероятности – наука, которая, изучая массовые случайные события (явления), описывает их, выявляя закономерности в этих процессах.
   Случайное событие может произойти при наличии определенных условий, но может не произойти, если даже эти условия налицо. В приборостроении, например, если при изготовлении одних и тех же деталей в пределах допустимых параметров все же происходит появление в одной из деталей серии других параметров, которые не входят в предельно допустимые границы (ПДГ), то это случайное событие: такое случайное событие в производстве разрешается.

2. Элементы математической статистики

   Наука, которая, изучая и описывая совокупность явлений, составляющих одно целое, но по одному (или нескольким) видам признаков (или свойств) разбивающая эти явления на группы, подгруппы, даже на единицы, называется математической статистикой. Математическая статистика является важнейшим инструментом в теории вероятности. Пример: изделия, составляющие одно целое по длине, весу, плотности, могут быть разбиты на подгруппы, например, по радиусу.
   Количественная оценка колебания признака в совокупности называется случайной величиной.
   Обнаруженное значение случайной величины называют статистической переменной (или вариантой). Наблюдаемые явления выделяют в разные разряды или классы, то есть группы. Количество таких групп называется частотой. Частоту выражают, как правило, в процентах от общего числа явлений. Частота в таком конкретизированном виде называется частостью.
   Принято говорить о частоте и частости типичного представителя разряда (класса группы) х, параметры которого находятся на границах [x'i, x"i], то есть
   x'i < x < x"i.
   Обычно говорят о срединном значении переменной ч, которое определяется формулой:

   Параметр xi определяется, как и частота, и частость, эмпирически либо опытным путем. Для того, чтобы 2б получить сведения о всей массе или партии изделий, требуется отобрать их часть; эту отображенную часть называют выборкой.
   Объемом выборки называют количество изделий в выборке (или число испытаний). Выборку деталей осуществляют в разных целях, чтобы определить соответствие требованиям взаимозаменяемости, оценить точность изготовления и т. д.
   Пусть имеем случайные события в количестве N, которые по определенному признаку формируют определенный класс. И пусть эти события отвечают следующим требованиям:
   1) все они равновероятны;
   2) несовместимы, то есть если произошло одно событие, то исключено появление любого другого;
   3) единственно возможны, то есть могут произойти события только из числа N событий, никакое другое произойти не может.

3. Вероятность события, операции над вероятностями

   Вероятностью Р события А при этих условиях будем считать отношение числа случаев m, в пределах которого происходит событие А, к числу N равновозможных событий.

   Рассмотрим следующие случаи.
   1. m = N, тогда Р(А) = 1. В таком случае событие считают достоверным.
   2. т = 0, то есть Р(А) = 0. Не произошло ни одного события, оно является невозможным.
   Очевидно, что
   0 < Р(А) < 1,
   где Р(А) – вероятность появления события А. По мере увеличения количества испытаний (или количества событий)
   Р (А) → 1,
   то есть вероятность появления событий А возрастает и наоборот.
   Над вероятностью можно производить сложение и умножение, как и над числами. Например, для того, чтобы определить вероятность появления одного из трех событии, слагают вероятность каждого из них. Пусть эт־, ими событиями будут события Б, в и С. Тогда вероятность того, что произойдет событие А или В, или С, определяется следующей формулой:
   Р(А н Вн С)=Р(А) +Р(В) + Р(С),
   где н– логический знак «или», P(A), P(B), P(C) – вероятность каждого из событий А, В или С.
   Различают события противоположные: если некоторое событие Д может произойти при непоявлении события А, то события А и Д являются противоположными. Если сложить их вероятности PА и Pд, то PА + Pд = 1,
   то есть в любом случае произойдет событие А или событие Д.
   Событие называется независимым, если его появление не зависит от появления любого другого события. Иначе событие называется зависимым.

4. Условная и полная вероятности

   Условная вероятность – такая вероятность события А, которая вычислена при предположении, что событие Д произошло: при этом события А и В являются зависимыми, они обозначаются как Р(А /В) или Р(А)В.
   Совместное (одновременное или последовательное) появление нескольких независимых событий А, В, С, Fназывается сложным событием. Вероятность сложного события определяется путем умножения вероятностей составляющих его событий.
   Р (АиВиСи…иF)= Р(А) × Р(В)А × Р (САВ) ×… × Р(F)АВС.
   В случае независимости событий (8) выглядит следующим образом.
   Р (АиВиСи…иF)= Р (А) × Р (В) × Р (С) × … × Р (f).
   Формула, которую привели выше, справедлива, если события А или В или С несовместимы. В случае их совместимости формула выглядит следующим образом:
   Р(А ν В ν С)=Р(А) + Р(В) + Р(С) – Р(АиВиС).
   Р (АиВиС)= Р (А) × Р(В) × Р (С)
   С учетом этого получим
   Р (А ν В ν С)=Р (А) + Р (В) + Р (С) – Р (А) × Р (В) × Р (С).
   Теперь, после некоторого ознакомления с арифметическими операциями над вероятностями, можно привести формулу полной вероятности

   В формуле предполагается, что событие А может произойти только с одним из n несовместимых событий B1….,Bn, то есть группа событий А и B1, или А и B2 и т. д. Любая группа из этого ряда равносильна появлению события А.
   Пример 2. Пусть события D, Е, F независимые. Какова будет вероятность событий трех извлечений подряд небракованных деталей при условии, что выборка повторная.
   Решение. При данном условии после извлечения каждый раз бракованной детали, а больше одной детали нельзя извлечь, количество бракованных деталей с каждым разом уменьшается на единицу. В третий раз будет извлечена последняя бракованная деталь.

5. Распределение случайных величин

   Затрагивая вопрос о вероятности некоторого события, нельзя не говорить о закономерностях появления случайных величин.
   Чтобы упростить ситуацию, эти величины делят на:
   1) прерывные (дискретные) – например, количество некоторой продукции, не отвечающее установленным стандартам;
   2) непрерывные – например, единицы той же продукции, которые имеют неодинаковые параметры, но эти параметры находятся в пределах границ предельно допустимого.
   Зависимость между возможными значениями случайных величин и их вероятностями, выраженными конкретным способом, называется законом распределения случайных величин.
   Для того, чтобы установить математическую форму этого закона, предположим, что дискретная случайная величина х может принимать значения х1, x2, x3…, хi…., xk, и пусть каждому из этих значений соответствует вероятность Px. Тогда ряд вероятностей, соответствующих значениям случайной величины х, будет иметь следующий вид Px,Px1,Px2,…,Pxi,…,Pxk.
   Очевидно, что вероятность Px является некоторой функцией от переменной х и имеет вид: Px = f(х), где x = xi, i = 1, 2…, k.
   Рассмотрим поведение этой функции для вышеприведенных двух видов случайных величин.
   1. Случайная величина – дискретная (прерывная).
   Случайная величина х < х', где х < х' задано, может выражаться следующим образом:
   Функция F(х)=F(х') называется функцией распределения случайной прерывной величины ч. 2. Случайная величина – непрерывна. Плотностью вероятности Px в точке X = х называется предел вида

   Следовательно, функцию F(х') можно дифференцировать, тогда
   F (х)=f (х)
   Основные свойства функции распределения следующие:
   1) х = ∞;F(∞)= 1;
   2) х = —∞;F(∞) = 0;
   3) если аргумент x возрастает, т. е. если рассмотреть случай х2 > х1, то F(x2) > F(x1).
   Если рассмотреть ΔF(х)=F(х2)-F (х1) то

6. Статистика распределения случайных величин

   Основные характеристики случайных величин.
   1. Меры положения.
   Таковыми называют (считают) точки, вокруг которых происходит колебание характеристики величин.
   Сумма произведений эмпирических значений случайной величены xi на соответствующие частности называется выборочным средним 
    – это статистическая характеристика, соответствующая параметрам, т. е. теоретическому анализу, называемая средним значением случайной величины или математическим ожиданием случайной величины.
   Математическое ожидание обозначается как 
   или м.о.(х), и определяется по уже известному теоретическому распределению.
   При прерывности случайной величины

   где p(x) – функция, которая определяет вероятности p(x) для всех xi случайной величины. При непрерывности случайной величины

   где f(x) – плотность вероятности,
   F(x) – функция распределения случайной величины.
   Кроме вышеприведенных оперируют следующими мерами положения:
   1) среднее гармоническое;
   2) среднее логарифмическое;
   3) скользящее среднее;
   4) накопленное среднее.
   Но эти меры используются не очень часто.
   2. Меры рассеяния.
   Если меры положения характеризовали точки, вокруг которых происходило колебание значений случайных величин, то меры рассеяния характеризуют группировку самих значений колеблющейся величины x или xi
   Подхарактеристика мер рассеяния:
   1. Выборочное среднее абсолютное отклонение
   – абсолютное отклонение наблюденного значения xi случайной величины от выборочного среднего.
   2. Выборочная дисперсия S2; она характеризует рассеяние или однородность случайной величины xi

7. Выборочное среднеквадратичное отклонение

   Эта характеристика пользуется наибольшей популярностью:

   При n1 = n2 =... = nk = 1, т. е. в случае несведения в разряды наблюденных значений xi,

   Дисперсией δ2 теоретического распределения прерывной случайной переменной является математическое ожидание квадрата отклонения случайной величины х  от ее определенного значения xо ,т. е.

   Это математическое ожидание представляет собой: если случайная величина прерывная, то

   где p(xk) – вероятность случайной величины хk
   Роль в теории вероятности среднего квадратичного отклонения наглядно показывает неравенство Чебы-шева, которое имеет вид:

   где x – случайная величина;
   хо – ее математическое ожидание;.
   f > 0 – некоторый численный коэффициент.
   Если взять t = 3, то из (40) следует:

   что означает вероятность отклонения случайной величины x от своего среднего значения на величину большую, чем 3δ. Причем полученный результат справедлив при любом теоретическом распределении.
   Как разновидностью меры рассеяния в приборостроении, пользуются коэффициентом изменчивости – вариации.
   3. Еще одной важной разновидностью меры рассеяния в приборостроении для статистического анализа и контроля является размах выборки W, его также называют широтой эмпирического распределения.
   W = ximax = ximin
   Как видно из формулы, размах выборки характеризует однородность наблюденных значений случайной величины хг В зависимости от знака W, можно заключить об отношении случайной величины к мере положения (конкретно, выборочной медиане), что и видно из следующей системы:

8. Теоремы о средних значениях и дисперсиях

   Теоремы о средних значениях и дисперсиях дают представление о том, как себя поведут средние значения и дисперсии при объединении нескольких выборок, у каждой из которых есть свое средневзвешенное значение случайной величины.
   Пусть объемы N1, N2, ... ,Nk, которые имеют соответствующие средневзвешенные х1, x2, …, xk, объединены в одно.
   Теорема 1. Математическое ожидание (среднее значение) суммы случайных величин равно сумме их математических ожиданий (средних значений).
   То есть математическое ожидание суммы

   точно так же себя ведет дисперсия.
   Теорема 2. Дисперсия объединенной выборки S2 равна средневзвешенной из дисперсий отдельной выборки, сложенной с дисперсией средних xi частных выборок, т. е. если дисперсии S12,S22, …,Sk2 ־ принадлежат выборкам N1, N2, ... ,Nk, то в случае объединения этих выборок общая дисперсия


   Очевидно, что объемы N1, N2, Nkобъединены в одну выборку с соответствующими дисперсиями
   S12,S22, …,Sk2
   Вторым слагаемым является дисперсия средних xi частных выборок около среднего объединенной выборки х. Поэтому очевидно, что

   то второе слагаемое тоже равнялось бы нулю. В таком случае

   где S2 – средневзвешенная из дисперсий исходных выборок.
   Таким образом, дисперсия суммы (или разности) независимых случайных величин равна сумме дисперсий этих величин.
   В общем случае,

9. Закон распределения Пуассона и Гаусса

   Закон Пуассона. Другое название его – закон ра-определения редких событий. Закон Пуассона (З. П.) применяется в тех случаях, когда маловероятно, и поэтому применение Б/З/Р нецелесообразно.
   Достоинствами закона являются: удобство при вычислении, возможность вычислить вероятность в заданном промежутке времени, возможность замены времени другой непрерывной величиной, например, линейными размерами.
   Закон Пуассона имеет следующий вид:

   и читается следующим образом: вероятность появления события А в m раз при n независимых испытаниях выражается формулой вида (59), где а = пр – среднее значение p(A), причем а является единственным параметром в законе Пуассона.
   Закон нормального распределения (закон Гаусса). Практика неуклонно подтверждает, что закону Гаусса с достаточным приближением подчиняются законы распределения ошибок при измерениях самых различных параметров: от линейных и угловых размеров до характеристик основных механических свойств стали.
   Плотность вероятности закона нормального распределения (в дальнейшем Н. Р.) имеет вид

   где x0 – среднее значение случайной величины;
   τ – среднее квадратическое отклонение той же случайной величины;
   e = 2,1783… – основание натурального логарифма;
   Ж – параметр, который удовлетворяет условию.
   Причина широкого применения закона нормального распределения теоретически определяется теоремой Ляпунова.
   При известных Х0 и δ ординаты кривой функции f(x) можно вычислить по формуле

   где t – нормированная переменная,

   (t) плотность вероятности z. Если подставить z и (t) в формулу, то следует:

   Кривую З.Н.Р. часто называют кривой Гаусса, этот закон описывает очень многие явления в природе.

10. Биноминальный и полиноминальный законы распределения. Равновероятное распределение. Закон распределения эксцентриситета

   1. Биноминальный закон распределения. Этот закон математически выражается формулой разложения бинома (q + p)2 в следующем виде

   где n! – читается как n-факториал,
   Cnm – биноминальный коэффициент, выражающий количество сочетаний из n элементов по m, причем, n – положительное целое число.
   2. Полиномиальный закон распределения (П/З/Р). В предыдущем случае рассмотрено два исхода появления случайного события А: или оно появится с вероятностью р, или не появится с вероятностью q = 1 – p.
   Когда количество независимых испытаний равно n, то велика вероятность того, что каждое событие Vi произойдет n раз, где i =1, 2,..., k. Причем 
    определяется формулой

   В виде формулы (58) получен искомый полиномиальный полиноминальный закон распределения.
   3. Равновероятное распределение. Рассматривая вышеприведенные законы распределения случайной величины, пришлось подчеркнуть различия в их проявлении при условиях: прерывно ли распределение случайных величин или непрерывно?
   Другое название этого закона – равномерное, или прямоугольное распределение, несет в себе больше информации о кривой этого закона. Вероятность наступления случайного события А на рассматриваемом промежутке одинакова в любой точке из промежутка[в; с]. Для Р/Р плотность

   где в, с – параметры З/Р/Р.
   Функция распределения для З/Р/Р имеет вид:

11. Другие законы распределения

   В технической промышленности, в том числе приборостроении, применяются некоторые другие виды законов распределения, кроме вышерассмотренных. При этом распределение случайных величин идет уже по самым разнообразным их параметрам. Приведем краткое изложение еще трех законов распределения случайной величины.
   1. Композиция законов распределения, так называют закон распределения суммы случайных величин, причем слагаемые суммы заданы предварительно.
   Если рассмотреть случайную переменную Ж = X + Y, где X и Y имеют соответствующие плотности вероятности и независимы, то плотность вероятности Z

   где t выступает как переменная интеграции. Замечено: какому закону распределения следуют X и Y, тому же следует Z.
   2. Экспоненциальный закон распределения. Этому закону распределения следуют случайные величины, удовлетворяющие условию. Его плотность вероятности

   Функция распределения

   В формулах xo – среднее значение случайной величины.
   Этот закон находит применение при исследовании самых разнообразных вопросов в средствах автоматики, в производстве радиоэлектронной аппаратуры. Например, для определения вероятности безотказной работы в течение времени X > x.
   3. Закон распределения Стьюдента. Этот закон представляет интерес, если число выборок n < 30, при n > 30 он переходит в нормальный закон распределения. Закон имеет следующий вид:

   где n – объем выборки,
   t – случайная переменная.
   Из-за ее сложного вида не приводим формулу для плотности вероятности (), отметим только, что функция () является четной и ее кривая симметрична относительно оси ординат. Функция распределения этого закона имеет следующий вид:

   Формула читается так: вероятность того, что случайная переменная t примет значение меньше заданного t0, есть интеграл от плотности этой вероятности (t).

12. Взаимозаменяемость как важнейший конструкторский принцип в приборостроении

   Современное приборостроение развивается в направлении все большего вторжения радиоэлектронной аппаратуры в машиностроение. Удобно объяснить роль взаимозаменяемости на примере электронного приборостроения. Ясно, что совокупно различные радиоэлектронные аппараты состоят практически из одних и тех же радиоэлектронных деталей, как и различные слова, предложения, текст самой этой книги состоят из одних и тех же букв.
   В радиоэлектронике радиодетали характеризуются максимальным и минимальным напряжениями, токами, мощностью, входными и выходными параметрами и, разумеется, геометрическими размерами радиодеталей. Радиоэлектронное приборостроение является частным случаем приборостроения.
   В радиоэлектронике производство самих радиодеталей и радиоэлектронные аппараты носят унифицированный характер.
   В других секторах приборостроения эта унификация достигается с соблюдением определенной погрешности (допуска) других параметров: гидравлических, оптических, механических и т. д.
   В итоге одни и те же, например, подшипники находят применение в производстве, казалось бы, совсем отдаленных друг от друга изделий.
   Таких взаимозаменяемых узлов и деталей, которые позволяют сборку самых разнообразных приборов, механизмов без предварительной обработки этих узлов, в машиностроении очень много: такое свойство узлов (деталей) называют взаимозаменяемостью.
   Взаимозаменяемость – это важнейший принцип проектирования, производства и эксплуатации, который обеспечивает сборку (ремонт) независимо изготовленных деталей в узел (узлы) механизмов (приборов). Взаимозаменяемость как принцип предъявляет к узлам (деталям) следующие требования к точности их параметров: геометрическая, механическая, электрическая, и т. п.
   При соблюдении точности по вышеуказанным параметрам, технические характеристики узлов (изделий) окажутся в заданных (допустимых) пределах, а их производство – рентабельным.
   Достижение вышеуказанных требований в немалой степени зависит от качества материала, из которого изготавливаются узлы изделий. Качеством материала (а это его химические и физические свойства) задается долговечность узлов изделий в приборостроении.
   В современном машиностроении целые заводы, полностью работающие в автоматизированном режиме, – привычное явление. Такая степень автоматизации, кооперации, специализации современного производства невозможна без взаимозаменяемости.
   Взаимозаменяемость узлов и деталей следует из требований к их точности, а также из необходимости унификации, нормализации, стандартизации.
   Требование к точности унифицированных узлов предполагает:
   1) наличие определенного стандарта для каждого вида изделий, выражается в нормализации допуска к этой самой точности;
   2) соблюдение специфической технологии для каждого вида серийно выпускаемого изделий;
   3) соблюдение единства мер (последнее обеспечивает непрерывная поверка измерительных средств).

13. Классификация взаимозаменяемости

   По степени сопряжения различается:
   1. Полная взаимозаменяемость (когда степень сопрягаемости очень высокая) – прочие физические параметры узлов точно соответствуют заданному, а это диктует их соответствие определенной задан-ности, которая ограничена минимальными и максимальными значениями, а последние следуют из эксплуатационных требований, сама граница допуска рассчитывается по теоретико-вероятностному методу, который изложен в предыдущей главе.
   Когда взаимозаменяемость полная, то упрощается сборка, растет масштабность кооперации, повышается степень специализации и обеспечения запчастями, а также эффективность производства, в силу более рационального расхода времени, высокого темпа работы.
   В итоге становятся возможными конвейерное производство, организация цехов автоматизированных заводов. Все вышеуказанные достоинства этого вида взаимозаменяемости были бы невозможны без соблюдения довольно жестких требований к точности параметров.
   2. Исходя из геометрических параметров и учитывая, насколько присоединяемы узлы различают внешнюю взаимозаменяемость, когда речь идет о сравнении наружных и внутренних размеров, и внутреннюю взаимозаменяемость, когда речь идет о том же самом, однако рассматриваются внутренние части узлов и деталей.
   3. Функциональная взаимозаменяемость. Имеется в виду взаимозаменяемость узлов, когда, несмотря на различие между ними по некоторым параметрам, это различие не сказывается на выполнении функций, для которых они предназначены.
   Само собой разумеется, что задать теоретически границы допуска при функциональной взаимозаменяемости невозможно, это делается эмпирически.
   После анализа полученных результатов (степени их влияния на работу установок и механизмов, на эксплу-тационные методы) устанавливают оптимальные допуски на исследуемые параметры. Сами параметры называют функциональными параметрами. Насколько высока роль принципа взаимозаменяемости в производстве изделий машиностроения (приборостроения), говорит срок их службы, т. е. повышая степень взаимозаменяемости, можно увеличить срок службы механизмов и приборов.
   Конструктивные требования больше опираются на функциональные параметры, поскольку при этом расходы, а следовательно, и стоимость изделий наименьшие.
   Уровень взаимозаменяемости в производстве тех или других узлов зависит от того, насколько трудоемки:
   1) изготовление узлов и деталей;
   2) изготовление механизмов из этих узлов.
   Если взять отношение характеристик трудоемкости и ввести коэффициент взаимозаменяемости КВ, равный этому отношению, KB < 1, поскольку производство узлов и деталей менее трудоемки, чем сборка из них механизмов.
   Кв → 1 говорит о высокой рентабельности и эффективности производства, о наименьших потерях в производстве узлов и деталей, а значит, и самих приборов.

14. Взаимозаменяемость по геометрическим и механическим параметрам

   Применительно к практике геометрическиепараме-тры называют номинальными. Действительные результаты отличаются от номинальных. В достижении заданной шероховатости поверхности или длины, ширины, высоты, радиуса, может получиться деталь формы совсем другого геометрического тела: в последнем случае называют макроотклонениями поверхности. Эти отклонения характеризуются волнистостью, при этом расстояния между соседними возвышениями, впадинами оказываются больше, чем высота или глубина.
   Если эти расстояния меньше, чем высота или глубина, то дефект называют микроотклонениями.
   Необходимость повышения качества в производстве предполагает уменьшение отклонения всех порядков. Исходя из этого, требования к обеспечению взаимозаменяемости устанавливают обязательность соблюдения точности по линейным и угловым размерам, геометрической форме поверхности, взаимному расположению поверхностей друг к другу или к осям, волнистости и шероховатости поверхности.
   Директивными документами для достижения уменьшения отклонений служат рабочие чертежи, ГОСТы, рекомендации ПСО (международная организация по стандартизации).
   Взаимозаменяемость характеризуется и по многим другим параметрам, кроме геометрических, например, по механическим, физическим, пневматическим, гидравлическим, электрическим и другим. Эти виды взаимозаменяемости объединяет то, что они функциональны. Следовательно, требуется однородность изделий, которая предполагает однородность самих исходных материалов и полуфабрикатов.
   Механические параметры взаимозаменяемости – это характеристики упругости элементов, которые, в свою очередь, зависят от физико-механических свойств исходного материала, а также от технологии производства этих элементов.
   В качестве упругих свойств элементов рассматривается реакция этих элементов на прогиб и раскрутку, последние, как известно из теоретической механики, характеризуются модулем упругости Е и коэффициентом Пуассона М. Допуск на них определяется количеством уравнений, характеризующих систему.
   В общем же случае для достижения полной взаимозаменяемости требуется обеспечение наименьшего разброса: любой плавности прогиба или раскрутки упругого элемента к приложенным усилиям; любых приемлемых значений этой плавности; любой остаточной деформации после снятия усилий; гистерезиса: любое несовпадение характеристик при погружении и разгружении упругого элемента и др.
   При рассмотрении взаимозаменяемости по другим параметрам, требования примерно такие же.
   Небольшим характерным отличием обладает взаимозаменяемость по магнитно-электрическим параметрам. Специфика этих элементов такова, что требуемой величины можно достичь путем различного сочетания тех же магнитно-электрических элементов.

15. Допуски и посадки: их классификация. Допуски и посадки типовых узлов и деталей в приборостроении

   Характеристики допуска и посадки – понятия, характеризующие процесс соединения узлов (деталей), т. е. степень приемлемости рассматриваемых узлов для сборки определенного механизма (прибора).
   «Посадка»: это разность между линейными размерами отверстия и вала. Когда соединяют два узла цилиндрической формы, то внутренняя поверхность «одеваемого» цилиндра называют охватывающей поверхностью, внешнюю поверхность другого называют охватываемой поверхностью, если поверхность охватывающая, то ее называют отверстием, в противоположном случае – валом. Если, диаметр отверстия больше, чем диаметр вала, то разность диаметров называют зазором. Если же диаметр вала больше – натягом.
   
Купить и читать книгу за 39 руб.

Вы читаете ознакомительный отрывок. Если книга вам понравилась, вы можете купить полную версию и продолжить читать

<>