Назад

Купить и читать книгу за 14 руб.

Вы читаете ознакомительный отрывок. Если книга вам понравилась, вы можете купить полную версию и продолжить читать

Шпаргалка по концепциям современного естествознания

   Все выучить – жизни не хватит, а экзамен сдать надо. Это готовая «шпора», написанная реальными преподами. Здесь найдешь все необходимое по Концепциям современного естествознания, а остальное – дело техники.
   Ни пуха, ни пера!


А. С. Кусков, А. Д. Барышева, А. В. Скорик Шпаргалка по концепциям современного естествознания

1. НАУКА КАК ФЕНОМЕН ПОЗНАНИЯ

   Наука (от греч. episneme – «знание», лат. scientia – «знание») – сфера деятельности, направленная на добывание и осмысление знания.
   Особенность научных знаний заключается в глубоком проникновении в суть явлений, в их теоретическом характере. Научное знание начинается тогда, когда за совокупностью фактов осознается закономерность – общая и необходимая связь между ними, что позволяет объяснить, почему данное явление протекает так, а не иначе, предсказать дальнейшее его развитие.
   Непосредственные цели науки – описание, объяснение и предсказание процессов и явлений действительности, т. е. в широком смысле ее теоретическое отражение. Язык науки существенно отличается от языка других форм культуры, искусства большей четкостью и строгостью.
   Наука – это мышление в понятиях. Центральное место в науке занимает критерий рационального освоения мира. Наука имеет своим результатом целенаправленно отобранные и систематизированные факты, логически выверенные гипотезы, обобщающие теории, фундаментальные и частные законы, а также методы исследования.
   Научное познание основывается на целом ряде принципов.
   Обычно выделяются следующие принципы, лежащие в основе научного понимания реальности. Первый – это принцип объективности, означающий признание факта существования независимого от человека и его сознания внешнего мира и возможности его познания.
   Второй принцип – принцип причинности, или, говоря строго научно, принцип детерминизма, означает утверждение о том, что все события в мире связаны между собой причинной связью. Беспричинных явлений не бывает, равно как не бывает событий, не влекущих за собой каких-либо следствий.
   Следующий важный принцип – это принцип рациональности, аргументированности, доказательности научных положений. Любое научное утверждение имеет смысл и принимается научным сообществом лишь тогда, когда оно доказано.
   Важную роль в научном познании играет принцип системности. В его рамках любое явление понимается как элемент сложной системы. Причем эта связь такова, что система в целом не является арифметической суммой своих элементов. Система представляет собой более сложное и существенное явление. Наука исходит из того, что в ней не может быть абсолютных истин. Несоответствие ранее утвержденных истин реальному положению дел преодолевается благодаря принципу критичности, лежащему в основании научного знания.
   Объективное знание является условием человеческой свободы, оно освобождает человека от той ограниченности, которая обусловлена принадлежностью человека к роду, исторической эпохе, конкретной культуре, языку, жизненному личному опыту. Вместе с тем достоинство и значимость науки для человечества могут оборачиваться и недостатками. Сегодня идея неограниченной свободы исследований, которая была, безусловно, прогрессивной, уже не может приниматься безоговорочно, без учета социальной ответственности. Наука не всегда осознает собственную ограниченность в качестве средства постижения мира. Свободная безответственность при нынешних возможностях науки может быть чревата тяжелыми последствиями для человека и человечества. Осмысление специфики научного знания по-прежнему остается актуальной задачей.

2. НАУКА И РЕЛИГИЯ

   Наука и религия представляют собой фундаментальные области культуры, типы мировоззрений, взаимодействующих друг с другом.
   Понимание соотношения науки и религии в течение долгого времени сводилось к тому, что они трактовались как диаметрально противоположные, взаимоотрицающие явления. Проблема соотношения веры и знания решалась в рамках оценки религии как низшего вида знания, которое с развитием науки обречено на исчезновение. Но на самом деле отношения между научным и религиозным типом миропонимания гораздо сложнее. Религия и научное знание стали рассматриваться как различные и правомерные формы духовной активности человека.
   Фундаментальные познавательные установки научного и религиозного способа миропонимания пересекаются друг с другом. Наука не представляет собой абсолютно объективизированное знание. Человечеству, несмотря на научный прогресс, не дается и ныне восприятие целостности мироздания.
   В науке существуют структуры, которые выводят знания, принимаемые на веру в качестве аксиом тех или иных научных теорий. Религиозные системы – это тоже не только своды положений, апеллирующих к вере, но и некоторые обобщения, опирающиеся на аргументацию и доказательность. Религиозное мировосприятие имеет свой высший уровень – теологию, где под установки вероисповедания подводится базис рационального обоснования и доказательства.
   Но между наукой и религией есть различия.
   Наука не исходит из абсолютных истин, науке свойствен критический взгляд на то, что происходит в ее поле. Давление новых доказательств может привести к пересмотру прежних положений. Источником религиозности является не объективная реальность, а сверхналичное откровение, знание, данное человеку свыше (от Бога). Откровение не подвергается критической рефлексии, оно является высшей, абсолютной информацией, которую ограниченный разум человека в его конечном бытии не может представить во всей полноте. Религия восходит к смыслу человеческого существования, отвечает на предельные вопросы, связанные с абсолютными идеалами.
   Наука тоже сталкивается с проблемой абсолютов, но они уходят в бесконечность, которой нет конца и границ, раздвижение пределов познания не уменьшает мир непознанного, это стимулирует дальнейшее освоение реальности.
   В религии абсолют выступает миром должного, идеального, задающего бытию человека смыслообразую-щие компоненты.
   Наука изучает сущее, религия – мир должного. И наука, и религия отвечают на важные вопросы человеческой жизни, но религия дает ответы и на те вопросы, на которые пока не дает ответ наука.
   Наука и религия не противоположны, они действуют по принципу дополнительности формально-рационально-познавательного и инстинктивно-этического способов освоения мира.
   И пока есть пределы научного познания, будет место религиозному мировосприятию, исходящему из целостности и всеохватности мира. Научное развитие разрушает традиционные установления, но открывает новые возможности, в том числе и для религии. Наука не вытеснила религию. Раздвинув границу познания, наука столкнулась с еще большими глубинами непознанного и остающегося для человеческого разума «тайной», что создает поле для религиозного мироощущения.

3. ЕСТЕСТВЕННЫЕ И ГУМАНИТАРНЫЕ НАУКИ

   Качественное многообразие действительности и общественной практики определило многоплановый характер человеческого мышления, разные области познания.
   Современная наука – чрезвычайно разветвленная совокупность отдельных научных отраслей. Она включает около 15 тысяч дисциплин, которые все теснее взаимодействуют друг с другом. Наука изучает сегодня все, включая даже саму себя, – то, как она возникла, развивалась, как взаимодействовала с другими формами культуры, какое влияние оказывала на материальную и духовную жизнь общества. По мнению исследователей, наука как серьезное аналитическое явление еще молода. Ею не постигнуты все тайны мироздания. В сознании современных ученых имеется ясное представление об огромных возможностях дальнейшего развития науки, радикального изменения на основе ее достижений наших представлений о мире и его преобразовании.
   По своему предмету науки делятся на естественно-технические, изучающие законы природы и способы ее освоения и преобразования, и гуманитарные, изучающие человека и законы его развития.
   Естественные науки рассматривают мир как объективно существующий, изучают структуру этого мира, природу его элементов. Естествознание апеллирует к опыту как основанию знания и критерию истины.
   Гуманитарные науки изучают мир, прежде всего сотворенный человеком со стороны его духовного содержания и культурной ценности. Гуманитарные науки опираются более всего на значимость и смысл вещей. Гуманитарные науки имеют дело со знаковыми системами и их отношением к человеческой действительности.
   Естественные и гуманитарные науки различаются по функциям. Естественные науки занимаются описанием, объяснением и предсказанием явлений и свойств материального мира.
   Специфической функцией гуманитарных наук является понимание, которое заключается в раскрытии и истолковании смысла произведения. Существуют две трактовки понимания. Одна из них является психологической и утверждает, что процесс понимания есть акт вживания в замысел, мотивы и цели «автора» того или иного произведения. Например, если в качестве произведения берется какое-либо историческое событие, то его понимание достигается на пути раскрытия социально-экономических, политических, культурных и других условий, а также личност-но-психологических предпосылок действий конкретных исторических субъектов.
   Вторая концепция понимания связана с идеей произведения как знаковой системы, как «текста» в широком смысле этого слова. Объектом понимания является смысл, трактуемый как инвариантное содержание «текста» относительно вариантов «пересказа» или представления содержания «текста» различными знаковыми системами.
   Границы между науками в достаточной степени условны. Для современного этапа развития научного познания характерно взаимное обогащение научных методологий и критериев оценки научных результатов.
   Теоретические уровни отдельных наук смыкаются в общетеоретическом, философском объяснении открытых принципов и законов, в формировании мировоззренческих и методологических сторон научного познания в целом.
   Существенным компонентом общенаучного познания является философское истолкование данных науки, составляющее ее мировоззренческие и методологические основы.

4. ТЕХНИЧЕСКИЙ ХАРАКТЕР ЗАПАДНОЙ КУЛЬТУРЫ

   Культуру, рожденную в Европе, называют и европейской, и западной. Уникальность данной культуры многие исследователи связывают с особенностями индустриально-технической модели развития западного общества.
   Эту культуру отличает ориентация на инновации, на изменение привычного образа жизни, внесение подвижности в устоявшиеся, привычные формы. Данная черта способствовала формированию цивилизации техногенного типа. Ее характерная особенность – быстрое изменение техники и технологий благодаря систематическому применению научных знаний; это способность к умножению знаний и изобретению нового.
   Наращивание материального богатства на основе постоянного обновления технических систем стало целевой ориентацией западной цивилизации. КХУШ в. принимает определенные очертания новая картина мира. Решающая роль в ее возникновении принадлежит науке Нового времени. Наука постепенно превращается в непосредственную производительную силу общества. Подготавливается и впоследствии осуществляется промышленная революция, изменившая всю систему труда, материального производства. Постепенно «лицо» Европы начинает меняться, и на нем все больше просматриваются черты индустриального (промышленного) общества. Бурное развитие науки и техники изменяло взгляды на возможности человека. Непрерывный технический прогресс, культ разума, становление науки как социального института – все это укрепляло позиции человека по отношению к природе. Человек глубоко проник в огромную мастерскую природы, раскрыл множество тайн, бесстрашно проложил себе дороги в макро– и микромир, в беспредельные дали звездного пространства, достиг вершин могущества, о котором раньше было трудно и мечтать. Западная культура возвела науку и технику в культ. Еще в ХУШ в. французские материалисты сулили обществу не только господство над природой, но и материальное благополучие, здоровое существование. Нужно было только реализовать формулу «знание – сила», стать победителями в соревновании природы и человека. Но, покорив природу с помощью техники, человек оказался вынужденным приспосабливаться к законам функционирования технических устройств небеспроблемно для себя, а иногда и для своей жизни. Человек оторвался от природы, но и для техносферы не стал родственным элементом. Сегодня крепившиеся несколько столетий убеждения в необходимости роста прогресса с помощью науки и техники несколько пошатнулись. Выросли беспокойство по поводу безопасности и критика технического и научного прогресса, непредсказуемости его последствий для природы и человека. Но остановить прогресс нельзя: техника играет огромную роль в профессиональном развитии человека, в организации быта, экономии времени, совершенствовании и расширении коммуникативных связей, универсализации личности. Вопрос гармоничного существования человека и техники не разрешен. По мнению исследователей, главное в сложившейся ситуации – избежать духовной односторонности, выражающейся в формировании личности технократического типа. Неизбежность, обусловленная техникой, может быть смягчена путем интеграции технического и гуманитарного знания.

5. ЗНАЧЕНИЕ НАУЧНО-ТЕХНИЧЕСКОЙ РЕВОЛЮЦИИ

   Естествознание – и продукт цивилизации, и необходимое условие ее развития. С его помощью человек развивает производство, совершенствует общественные отношения, воспитывает и обучает новые поколения людей, лечит свое тело. Это и важнейший двигатель общественного прогресса. Великие научные открытия и связанные с ними технические изобретения всегда оказывали колоссальное, подчас совершенно неожиданное воздействие на судьбы человеческой истории. Особенно мощным это воздействие стало в настоящее время – в эпоху научно-технической революции (НТР). НТР, помимо преимуществ, породила и ряд проблем. Мы сегодня живем в техногенном обществе, постоянно изменяющем бытие, обществе, в котором главной идеей развития является идея преобразования окружающего мира и подчинения природы человеку. Такое общество порождает разнообразные глобальные проблемы. Вот только некоторые из них.
   1. Выживание в условиях непрерывного совершенствования оружия массового уничтожения. Впервые человечество осознало свою эфемерность.
   2. Нарастающий глобальный экологический кризис.
   Человек – это часть природы, преобразующая саму природу, и масштабы, и последствия таких преобразований растут.
   3. Проблема сохранения человеческой личности, индивидуальности как биосоциальной структуры.
   Нарастание глобальных проблем человечества повышает ответственность ученых за судьбы человечества. Вопрос об исторических судьбах и роли науки в ее отношении к человеку, перспективах его развития никогда не обсуждался так остро, как ныне.
   В мире еще много непознанного. Многие явления природы и самого человека, его биологической и духовной составляющих пока не получили научного объяснения и носят таинственный характер. Но наука и не может немедленно объяснить все загадки.
   Научное познание – это историческая деятельность. Она развивается по мере совершенствования не только целей, но и средств познания. Многие явления научно не объяснены и остаются загадочными, поскольку еще не сформировались средства и методы их познания. Все, что пока не познано, может быть в конце концов исследовано и объяснено (если, конечно, не внесут свои ограничения сами сроки существования человечества), когда для этого сложатся соответствующие средства, способы познания. Развитие науки, особенно в практической ее части, можно прогнозировать. Вот научно обоснованный прогноз открытий на ближайшие 10–15 лет:
   – способы устранения веществ, загрязняющих атмосферу;
   – выяснение механизма возникновения раковых заболеваний, эффективное предотвращение метастазов рака, выявление генов, препятствующих раку;
   – искусственный фотосинтез;
   – компьютер с быстродействием 10 триллионов операций в секунду;
   – сверхбольшие интегральные схемы с объемом памяти 1 миллиард бит на одном чипе;
   – прогнозирование землетрясений сильнее 7 баллов за несколько дней до их начала;
   – сортировка мусора с возвратом ценных компонентов в хозяйственный оборот;
   – глобальный контроль над воздушным транспортом через спутниковые системы;
   – разработка методов лечения возрастного слабоумия;
   – перспективные разработки в областях искусственного интеллекта, нанотехнологий, солнечных элементов, сверхпроводимости, изменения климата.

6. ЛОГИКА КАК ПРОЦЕСС МЫШЛЕНИЯ

   В процессе мышления большое значение имеет оформленность его содержания, рациональный стиль. Логика обеспечивает познание мышления. Развивая мыслительные способности, логика дает навыки правильного рассуждения. Поэтому логику часто называют наукой о правильном мышлении.
   Но мышление – сложный, многосторонний процесс. И логику в нем интересует не все. Логика, в отличие от других наук, изучающих мышление, исследует процесс рационального отражения объективной реальности в понятиях, суждениях, теориях, позволяющих проникать в сущность, закономерные связи действительности.
   Как известно, все материальные предметы, явления и процессы имеют содержание и форму. Мысли не являются исключением из этого правила. Содержание мысли – это совокупность всех ее компонентов, свойств, состояний, характеристик, структурных связей, законов, представляющих собой результат отражения материального мира. Содержание мыслей человека бесконечно разнообразно. Но в различных по содержанию мыслях можно обнаружить нечто существенно общее. Оно характеризуется не конкретным содержанием этих мыслей, а типичностью, схемой, способом построения. При этом все содержательное многообразие укладывается в сравнительно небольшое число мыслительных форм. Дело в том, что логический строй мышления человека обладает важным свойством – имеет общепринятую форму.
   Знания о форме достаточно многообразны. Общепризнанным является то, что форма отражает способ связи содержательных частей. Многообразно понимается и логическая форма. Наши мысли слагаются из некоторых содержательных частей. Способ их связи и представляет форму мысли.
   Так, различные предметы отражаются в абстрактном мышлении одинаково – как определенная связь их существенных признаков, т. е. в форме понятия. В форме суждения отражаются отношения между предметами и их свойствами. Изменения свойств предметов и отношений между ними отражается в форме умозаключений. Следовательно, каждая из основных форм абстрактного мышления имеет нечто общее, что не зависит от конкретного содержания мыслей, а именно: способ связи элементов мысли – признаков в понятии, понятий в суждении и суждений в умозаключении. Обусловленное этими связями содержание мыслей существует не само по себе, а в определенных логических формах, каждая из которых при этом имеет свою специфическую структуру.
   В реальном процессе мышления содержание и форма мысли существуют в неразрывном единстве. Нет чистого, лишенного формы содержания, нет чистых, бессодержательных логических форм. Однако в целях специального анализа обычно исследователи могут отвлекаться от конкретного содержания мысли, сделав предметом изучения ее форму. Исследование логических форм безотносительно к их конкретному содержанию и составляет важнейшую задачу науки логики. Отсюда и ее название – формальная логика.
   Формальная логика отвлекается от конкретного содержания мыслей, но не от содержания вообще. Она учитывает истинность или ложность суждений. Однако центр тяжести она переносит на правильность мышления. Правильное (логичное) мышление имеет следующие существенные признаки: определенность, непротиворечивость, последовательность и обоснованность.

7. МАТЕМАТИЗАЦИЯ НАУКИ. ТЕОРИЯ ФРАКТАЛОВ

   После триумфа классической механики И. Ньютона количественные методы стали применяться и в других науках. Так, Лавуазье, систематически используя весы в своих опытах, заложил основы количественного химического анализа. Разработка И. Ньютоном и Г.В. Лейбницем дифференциального и интегрального исчисления, развитие статистических методов анализа, связанных с познанием вероятностного характера протекания природных процессов, способствовали проникновению математических методов анализа и описания действительности в другие естественные науки.
   Дифференциальное и интегральное исчисление хорошо подходит для описания изменения скоростей движений, а вероятностные методы – для необратимости и создания нового. Все можно описать количественно, и тем не менее остается проблемой отношение математики к реальности. По мнению одних методологов, чистая математика и логика используют доказательства, но не дают никакой информации о мире, а только разрабатывают средства его описания. Но еще Аристотель писал, что число есть промежуточное между частным предметом и идеей, а Г. Галилей полагал, что книга природы написана языком математики.
   Евкклид в своей геометрии свел природу к чистым и симметричным объектам: точка, одномерная линия, двумерная плоскость, трехмерное тело. Среди тел имеется ряд чисто симметричных форм, таких как конусы, цилиндры, блоки. Ни один из этих объектов не имеет в себе отверстий и внешних неровностей. У каждого правильная гладкая форма. Для греков симметрия и сплошность были признаками совершенства. Только совершенство предполагалось в природе.
   В реальности природа отвергает симметрию так же, как она не любит равновесия, – это в некотором смысле эквивалентные состояния. Природные объекты огрубленных форм не являются разновидностями чистых евклидовых структур. В результате создание компьютерных изображений гор при помощи евклидовой геометрии представляет собой устрашающую задачу, которая требует множество строк программного кода и большого количества обращений к датчику случайных чисел. С помощью же фрактальной геометрии гора может быть создана на экране дисплея посредством всего лишь нескольких повторно применяемых правил.
   Бенуа Мандельбротможет быть назван Евклидом фрактальной геометрии. Он собрал наблюдения математиков, которые изучали «монстров», т. е. объекты, не определимые на путях евклидовой геометрии. В итоге обобщения этих математических работ и своего собственного озарения он создал геометрию природы, которая преуспела в описаниях асимметричности и невнятных форм. Б. Мандельброт сказал: «Горы не являются конусами, и облака – не сферы».
   Так что же такое фрактал? Это объект, в котором части некоторым образом подобны целому, т. е. отдельные составные части самоподобны. Один из самых наглядных естественных фракталов – это дерево. Древесные ветви следуют так называемому скейлин-гу, т. е. каждое ответвление со своими собственными ветвями подобно всему дереву целиком в качественном смысле.
   Не имея непосредственного отношения к реальности, математика не только описывает эту реальность, но и позволяет делать новые интересные и неожиданные выводы о реальности из теории, которая представлена в математической форме.

8. ФУНДАМЕНТАЛЬНЫЕ ПАРАДИГМЫ ЕСТЕСТВОЗНАНИЯ

   В истории науки существует множество различных парадигм. В современном понимании парадигма (от греч. paradeigma – «пример, образец») – это определенные правила описания, объяснения и понимания мира.
   Понятие «парадигма» введено Г. Бергманом и широко использовано Т. Куном для обозначения ведущих представлений и методов получения новых знаний. Оно часто заменяется понятием «картина мира».
   Определенная система убеждений существует в любой исследовательской области. Приверженность к парадигмам отличает любое серьезное исследование. Без некоторого набора априорных убеждений, фундаментальных выводов и установок научная деятельность вообще невозможна.
   Парадигмы несут не только познавательный, но и нормативный смысл: они устанавливают допустимые методы и набор стандартных решений. Но в науке возможно коренное переопределение парадигм.
   Одной из наиболее авторитетных парадигм является объяснение мира исходя из принципа атомизма, или элементарности. Суть данного принципа состоит в утверждении того, что целое понимается как сумма частей, элементов.
   Такое понимание обнаруживается во многих науках. На основе парадигмы атомизма основана классическая механика, учение об электричестве и магнетизме, кинетическая теория газов, неорганическая химия, клеточная теория живых организмов. Принцип элементарности реализуется и в социальных теориях (например, в понимании общества как совокупности индивидов).
   Иную картину мира дает парадигма целостности. Она исходит из того, что не существует простых элементов, определяющих свойства и структуру целого мира. Первичным по отношению к частям может быть целое. Любая вещь обретает определенные свойства благодаря нахождению в системе определенных отношений. Такое понимание целого и части составляет суть системного подхода в науке. Системный подход стал одним из основных в математике, других естественно-научных предметах. Он широко применяется и в гуманитарных науках.
   Парадигма целостности подразумевает, что всякое единичное существование является относительным, т. е. оно определяется отношением к «другому». Принцип относительности наибольшее развитие получил в теории А. Эйнштейна, в которой пересмотру были подвергнуты фундаментальные представления о пространстве, времени, движении.
   Понимание относительности физической реальности углубила квантовая физика. В ее рамках изменились представления о самих физических объектах, которые обладают двойственной природой, таких как частицы и волны.
   Ограниченные возможности измерения выражают вероятностную природу поведения и состояния объектов. Идея относительности наиболее полно отразилась в принципе симметрии, хотя природа знает и явления асимметрии.
   На современном этапе все большую популярность приобретает синергетическая парадигма. Синергетика (от греч. synergetike – «сотрудничество, совместное действие») изучает общие принципы и закономерности, лежащие в основе процессов самоорганизации в системах различной природы. Синергетические системы характеризуются открытостью, неустойчивостью. Синергетика претендует на создание новой парадигмы в науке, разрабатывая новую картину мира, новые методы познания и практического отношения к действительности.

9. НАУЧНАЯ ТЕОРИЯ

   Каждый новый цикл научного познания начинается с обнаружения трудности. Трудность, сформулированная в виде вопроса, представляет собой проблему. В качестве одного из вариантов решения проблемы возникает гипотеза. Обоснованная гипотеза превращается в научную теорию или новую часть уже существовавшей ранее теории. Различаются гипотеза и теория тем, что гипотеза носит вероятностный характер, теория является знанием достоверного.
   Сам термин «теория» в литературе употребляется в двух смыслах. В широком смысле под теорией имеют в виду совокупность идей, направленных на истолкование и объяснение какого-либо явления, в более узком и специальном смысле теория есть высшая, самая развитая форма организации научного знания. В этом смысле она и анализируется ниже.
   От гипотезы теория отличается своей достоверностью, от других видов достоверного знания (например, от научных фактов) теория отличается своей строго логической организацией и своим объективным содержанием – отражением сущности явлений, общих законов их функционирования и развития. Поэтому только теория дает возможность понять объект познания в его внутренней связи и целостности, как систему. Благодаря этому теория выполняет не только функцию объяснения, но и не менее важную функцию научного предвидения.
   К основным элементам теории, ее структурным звеньям обычно относят прежде всего совокупность основных понятий, категорий, отражающих объект исследования. При помощи этих понятий в теории выражается определенная совокупность основных утверждений, в которых фиксируются законы взаимодействия элементов, сторон и связей объекта. Среди этих утверждений выделяются наиболее общие, фундаментальные, которые при логическом построении данной теории рассматриваются в качестве исходных (принципы, постулаты, аксиомы). Остальные утверждения теории выводятся или доказываются исходя из этих основных и первичных посылок.
   Понятия и утверждения, образующие содержание теории, расположены не в произвольном порядке, а представляют собой логически стройную, последовательную систему, в результате чего из одних утверждений с помощью законов и правил логики можно получить другие утверждения. Логичность сформировавшейся теории в целом, конечно, не отменяет наличия в ней диалектических противоречий, связанных с отсутствием фактического материала и даже некоторых утверждений, которые не полностью укладываются в логическую схему теории. Это несоответствие как раз и порождает импульс к ее дальнейшему развитию.
   Проблема соотношения старой и новой теории довольно успешно разрешается «принципом соответствия». Этот принцип гласит, что старая теория при возникновении и утверждении новой не отбрасывается начисто, а сохраняется в ней в статусе частного случая.
   При обнаружении проблемы, формулировании гипотезы, обосновании теории большое значение имеет способность к творческому воображению. Многие происходящие процессы нельзя воспринять как целое, но их можно вообразить, мысленно схватить. Именно фантазия, воображение, если они опираются на данные о реальных процессах, позволяют человеку заглянуть дальше и глубже, проникнуть в сущность и понять ее.

10. ГНОСЕОЛОГИЧЕСКИЕ ПРЕДПОСЫЛКИ НАУКИ

   Гносеология (теория познания) – это раздел философии, в котором изучаются закономерности и возможности познания, отношения знания к объективной реальности. Наука в ее современном понимании является принципиально новым фактором в истории человечества, возникшим в недрах новоевропейской цивилизации в XVI–XVII вв.
   Немецкий философ К. Ясперс говорит о двух этапах становления науки:
   – этап 1 – «становление логически и методически осознанной науки – греческой науки и параллельно зачатки научного познания мира в Китае и Индии»;
   – этап 2 – «возникновение современной науки, вырастающей с конца Средневековья, решительно утверждающейся с XVII в. и развертывающейся во всей своей широте с XIX в.».
   Именно в XVII в. произошло то, что дало основания говорить о научной революции, – радикальная смена основных компонентов содержательной структуры науки, выдвижение новых принципов познания, категории и методов.
   Социальным стимулом развития науки стало растущее капиталистическое производство, которое требовало новых природных ресурсов и машин. Для удовлетворения этих потребностей и понадобилась наука в качестве производительной силы общества. Тогда же были сформулированы и новые цели науки, которые существенно отличались от тех, на которые ориентировались ученые древности.
   Греческая наука была умозрительным исследованием (само слово «теория» в переводе с греческого означает «умозрение»), мало связанным с практическими задачами. В этом Древняя Греция и не нуждалась, поскольку все тяжелые работы выполняли рабы.
   Ориентация на практическое использование научных результатов считалась не только излишней, но даже неприличной, и такая наука признавалась низменной.
   Только в XVII в. наука стала рассматриваться в качестве способа увеличения благосостояния населения и обеспечения господства человека над природой.
   Ф. Бэкон выдвинул знаменитый афоризм «знание – сила». Ф. Бэкон пропагандировал эксперимент как главный метод научного исследования, нацеленный на то, чтобы изучать-природу.
   Стиль мышления в науке с тех пор характеризуется следующими двумя чертами: опорой на эксперимент, поставляющий и проверяющий результаты; господством аналитического подхода, направляющего мышление на поиск простейших, далее неразложимых первоэлементов реальности.
   Благодаря соединению этих двух основ возникло причудливое сочетание рационализма и чувственности, предопределившее грандиозный успех науки. Отметим как далеко не случайное обстоятельство, что наука возникла не только в определенное время, но и в определенном месте – в Европе XVI в.
   Причина возникновения науки – своеобразный тип новоевропейской культуры, соединившей в себе чувственность с рациональностью; чувственность, не дошедшую, как, скажем, в китайской культуре, до чувствительности, и рациональность, не дошедшую до духовности (как у древних греков). Никогда ранее в истории культуры не встречавшееся причудливое сочетание особой чувственности с особой рациональностью и породило науку как феномен западной культуры.
   Таким образом, наука – это особый рациональный способ познания мира, основанный на эмпирической проверке или математическом доказательстве. Наука – это в определенном смысле есть синтез философии и религии.

11. КЛАССИФИКАЦИЯ НАУЧНЫХ ТЕОРИЙ

   Все научные теории делятся на три класса. Это естествознание, обществознание и технические науки.
   Естествознание – это раздел науки, основанный на воспроизводимой эмпирической проверке гипотез и создании теорий или эмпирических обобщений, описывающих природные явления. Предмет естествознания – факты и явления, которые воспринимаются нашими органами чувств. Задача ученого – обобщить эти факты и создать теоретическую модель, включающую законы, управляющие явлениями природы. Следует различать факты опыта, эмпирические обобщения и теории, которые формулируют законы науки. Явления, например тяготения, непосредственно даны в опыте; законы науки – варианты объяснения явлений. Факты науки, будучи установленными, сохраняют свое постоянное значение; законы могут быть изменены в ходе развития науки.
   Значение чувств и разума в процессе нахождения истины – сложный философский вопрос. В науке признается истиной то положение, которое подтверждается воспроизводимым опытом. Основной принцип естествознания гласит: знания о природе должны допускать эмпирическую проверку. Не в том смысле, что каждое частное утверждение должно обязательно эмпирически проверяться, а в том, что опыт в конечном счете является решающим аргументом принятия данной теории.
   Естествознание в полном смысле слова общезначимо и дает «родовую» истину,т. е. истину, пригодную и принимаемую всеми людьми. Поэтому оно традиционно рассматривалось в качестве эталона научной объективности. Другой крупный комплекс наук – обществознание, напротив, всегда был, связан с групповыми ценностями и интересами, имеющимися как у самого ученого, так и в предмете исследования. Поэтому в методологии обществоведения наряду с объективными методами исследования приобретает большое значение переживание изучаемого события, субъективное отношение к нему и т. п.
   От технических наук естествознание отличается нацеленностью на познание, а не на помощь в преобразовании мира, а от математики – тем, что исследует природные, а не знаковые системы.
   Следует учитывать различие между естественными и техническими науками, с одной стороны, и фундаментальными и прикладными – с другой. Фундаментальные науки – физика, химия, астрономия – изучают базисные структуры мира, а прикладные занимаются применением результатов фундаментальных исследований для решения как познавательных, так и социально-практических задач. В этом смысле все технические науки являются прикладными, но далеко не все прикладные науки относятся к техническим. Такие науки, как физика металлов, физика полупроводников, являются теоретическими прикладными дисциплинами, а металловедение, полупроводниковая технология – практическими прикладными науками.
   Однако провести четкую грань между естественными, общественными и техническими науками в принципе нельзя, поскольку имеется целый ряд дисциплин, занимающих промежуточное положение или являющихся комплексными по своей сути. Так, на стыке естественных и общественных наук находится экономическая география, на стыке естественных и технических – бионика, а комплексной дисциплиной, которая включает и естественные, и общественные, и технические разделы, является социальная экология.

12. МЕТОДОЛОГИЯ И МЕТОДЫ НАУЧНОГО ИССЛЕДОВАНИЯ

   Методология (дословно – «учение о методе») в настоящее время определяется как наука о путях и средствах рационализации научного исследования, приращения нового значения.
   Метод (от греч. methodos – «преследовать») вначале понимался как образ преследования охотником зверя, но начиная с Платона как термин, обозначающий путь исследования, ведущий к истине, совокупность логических приемов достижения знания.
   Приращение нового знания возможно как логическим путем, с помощью метода, так и эмпирическим, через опыт, эксперимент.
   Метод является основным теоретическим инструментом получения и упорядочения научного знания.
   В науке существуют два рода методологии: общенаучная (философская) и частнонаучная, и три рода методов, разделяемых по широте их применения в науке: философские, общенаучные и конкретно-научные.
   Философские методы в силу всеобщности философии применимы к любому конкретному исследованию. Данные методы дают возможность связывать воедино все стороны процесса познания, все его ступени, например методы восхождения от абстрактного к конкретному, единства логического и исторического.
   Конкретно-научные методы применяются в одной или группе родственных наук. Область применения общих методов шире, но они не являются всеобщими, используются не на всех стадиях исследовательской работы.
   Методы также классифицируются в зависимости от содержания изучаемых наукой объектов. Например, методы естествознания имеют свои особенности по сравнению с методами гуманитарных наук.
   Если классифицировать методы в связи с основными этапами познавательных процессов, то выделяются следующие методы: методы эмпирического уровня познания (наблюдение, эксперимент, описание измерений, классификация) и методы теоретического уровня (идеализация, аксиоматизация, формализация, гипотеза, индукция, дедукция, анализ, синтез, систематизация).
   Особое значение для понимания единого процесса познания имеют системный метод познания, концепция самоорганизации, возникшая в рамках синергетики, а также общая теория информации, появившаяся в кибернетике.
   При системном подходе объекты исследования рассматриваются как элементы некоторой целостности или системы, связанные между собой определенными отношениями. Например, элементами системы живого организма являются клетки, они образуют подсистемы – ткани, которые составляют органы живого тела. Каждая из этих подсистем обладает определенной относительной автономностью, но подсистемы низшего уровня подчинены подсистеме высшего уровня. В целом же они составляют единый, целостный живой организм.
   Концепция синергетики, представляющая окружающий мир как самоорганизующийся универсум, позволяет лучше понять современную научную картину мира.
   Кибернетика изучает с единой точки зрения процессы управления в технических, живых и социальных системах. Кибернетика дала мощный толчок для развития теории информации.
   В основе научных методов лежит единство их эмпирической и теоретической сторон. Они взаимосвязаны и обусловливают друг друга. Их разрыв или преимущественное развитие одной за счет другой закрывает путь к правильному пониманию природы – теория становится беспредметной, опыт – слепым.

13. ГЛОБАЛЬНЫЕ ПРОБЛЕМЫ СОВРЕМЕННОСТИ

   Во второй половине ХХ в. человечество столкнулось с группой проблем, от решения которых зависит дальнейший социальный прогресс, судьбы цивилизации. Эти проблемы получили название глобальных (в переводе с лат. глобус – «Земля, земной шар»).
   Среди многочисленных глобальных проблем, порожденных техногенной цивилизацией и поставивших под угрозу само существование человечества, можно выделить три главных.
   Первая из них – это проблема выживания в условиях непрерывного совершенствования оружия массового уничтожения.
   В ядерный век человечество впервые за всю свою историю стало смертным, и этот печальный итог был «побочным эффектом» научно-технического прогресса, открывающего все новые возможности развития военной техники.
   Второй острой проблемой современности становится нарастание экологического кризиса в глобальных масштабах. Два аспекта человеческого существования как части природы и как деятельного существа, преобразующего природу, приходят в конфликтное столкновение.
   Представление о том, что природа неисчерпаема, оказалось неверным. Человек сформировался в рамках биосферы – особой системы, возникшей в ходе космической эволюции. Она представляет собой не просто окружающую среду, которую можно рассматривать как поле для преобразующей деятельности человека, а выступает единым, целостным организмом, в который включено все человечество в качестве подсистемы. Деятельность человека вносит постоянные изменения в динамику биосферы, и на современном этапе развития техногенной цивилизации масштабы человеческой экспансии в природу таковы, что они начинают разрушать биосферу как целостную экосистему. Грозящая экологическая катастрофа требует выработки принципиально новых стратегий научно-технического и социального развития человечества, стратегий деятельности, обеспечивающей коэволюцию человека и природы.
   Не менее остро выступает проблема сохранения личности человека как биосоциальной структуры в условиях растущих процессов отчуждения. Эту глобальную проблему иногда обозначают как современный антропологический кризис. Человек, усложняя свой мир, все чаще вызывает к жизни такие силы, которые уже не контролирует, которые становятся чуждыми его природе.
   Чем больше человек преобразует мир, тем в большей мере порождает непредвиденные социальные факторы, которые начинают формировать структуры, радикально изменяющие человеческую жизнь. Еще в 1960-е гг. философ Г. Маркузе констатировал в качестве одного из последствий современного техногенного развития появление «одномерного человека» как продукта массовой культуры. Впервые в истории человечества возникает реальная опасность разрушения той биогенетической основы, которая является предпосылкой индивидуального бытия человека. Угрозе уже подвергается существование телесности, являющейся результатом много миллионной биоэволюции. Мир скоростей, резких перемен сопряжен с нагрузками на психику, стрессами, разрушающими здоровье человека. Резко ухудшается генофонд человечества в процессе его биологического воспроизводства. Выход иногда видится в перспективах генной инженерии. Но это может привести к перестройке самих основ человеческой телесности с непредсказуемыми последствиями.

14. ВОЗНИКНОВЕНИЕ НАУКИ В АНТИЧНОЙ КУЛЬТУРЕ

   Наука появляется тогда, когда для этого создаются объективные условия, социальный запрос на объективные знания, выделение особой группы людей, реализующих данный запрос; накопление знаний, познавательных приемов, способов символического выражения и передачи информации.
   Совокупность таких условий складывается в древнегреческой культуре VII–VI вв. до н. э.
   Именно в этот период появляются первые рациональные программы, свободные от религиозных и мистических представлений. Именно здесь появляется наука как доказательное знание. Она не связывалась с непосредственно орудийно-трудовой деятельностью, была идеализированным феноменом.
   Но именно отказ от материально-практического отношения к действительности породил абстрагирование – непременное условие науки.
   Важной отличительной особенностью науки в контексте древнегреческой культуры была ее направленность на самостоятельное, объективное рассмотрение природы как реальности. Греческую мысль отличали стремление к точному познанию действительности, доказательству, критический дух и смелость выводов. Греческая наука отличалась независимостью от мифологии, из недр которой она вышла.
   Первой научной программой стала математическая программа, представленная Пифагором, позднее развитая Платоном. Отношения действительности Пифагор выразил в числах, представляемых им в качестве первоосновы мира.
   Историки науки считают, что основная заслуга Пифагора и его последователей заключается в том, что они превратили геометрию в теоретическую дедуктивную науку, заложили основы арифметики и математического естествознания, дали стимул к поиску количественных отношений в природе и выражению их языком математических формул.
   Дальнейшее формирование пифагорейской программы продолжили софисты и элеаты, разработавшие теорию доказательств. Свое завершение математическая программа получила в философии Платона, который представил мир идей как иерархически упорядоченную структуру. Платон основал первую научную школу – Академию.
   Второй научной программой античности, выступающей в качестве универсальной концепции природного мира, стал атомизм. Основоположниками его считаются Левкипп и его ученик Демокрит, хотя зачатки данного подхода можно обнаружить уже у Анаксиме-на, Эмпедокла, Анаксагора.
   Учение атомизма исходило из того, что неделимые атомы являлись началом всего сущего. Движение атомов выступало причиной изменений в природе.
   Программа ААристотеля стала третьей научной программой античности. В ней наряду со стремлением к целостному философскому осмыслению действительности отчетливо проявляются эллинистические тенденции к выделению отдельных направлений исследования в самостоятельные науки со своим предметом и методом.
   Аристотель в отличие от других античных мыслителей не отделял вещи и идеи. Заслугой Аристотеля является и создание понятийно-категориального аппарата науки, классификации научных знаний.
   Данные программы заложили основы науки, правда, научное знание пока было абстрактно-объяснительным, лишенным созидательного компонента, но зачатки науки как особого типа отношения к реальности появились в культуре античности.

15. НАУКА, ВЕРА, ЗНАНИЕ В УСЛОВИЯХ СРЕДНЕВЕКОВЬЯ

   В отличие от античности средневековая наука не предложила новых фундаментальных программ, но она не ограничилась только пассивным усвоением достижений античной науки.
   В средневековую эпоху основным доминирующим мировоззрением было теологическое мировоззрение. Наука становилась средством решения чисто практических задач.
   Наиболее представительными текстами, освященными божественным авторитетом, были тексты Священного Писания, истолкование текстов выступало основным в научной деятельности. Но христианское мировоззрение тем не менее посеяло зерна нового понимания природы, позволившего уйти от созерцательного отношения к ней античности и перейти к экспериментальной науке Нового времени, поставившей целью практическое преобразование мира.
   В недрах средневековой культуры развивались такие специфические области знания, как астрология, алхимия, натуральная магия. Эти дисциплины представляли собой промежуточное звено между ремеслом и натурфилософией и в силу своей практической направленности содержали в себе зародыш будущей экспериментальной, опытной науки.
   Ситуация изменилась в XII в., когда в христианской культуре стало использоваться наследие Аристотеля. Развести теологию и науку позволила концепция «двойственной истины», т. е. признание наряду с верой, основанной на откровении, и права на существование «естественного разума».
   Развитие астрономии, математики, физики требовало точных измерений – именно в лоне данных наук появляется экспериментирование. Рационализировалось и теологическое знание, пытавшееся в отличие от раннесредневековых представлений о Боге как непознаваемом феномене логически доказать существование Бога, понять совершенную красоту его творений.
   В развитии рациональности большое значение имели университеты, прививавшие логико-дискурсивное мышление и искусство аргументации. Без этого было бы невозможно дальнейшее развитие интеллектуальных средств научного познания.
   Идеи всестороннего обоснования знания развивали Ф. Бэкон и У. Оккам.
   Ф. Бэкон выступил с идеей математического естествознания, считая, что изучать и проверять все науки следует с помощью математики. В представлении Ф. Бэкона математика – «врата и ключ всех наук» – объединяет в себе комплекс теоретических и практических дисциплин.
   У. Оккам выдвинул идею радикального эмпиризма. Он впервые сформулировал принцип простоты научного знания, вошедший в методологию науки под названием «бритвы Оккама», острие которой было направлено против схоластики и расчищало поле деятельности для естествоиспытателей.
   Постепенно изменялось соотношение веры и разума, в эпоху Возрождения разум был поставлен выше откровения.
   Период Возрождения охватывал два с половиной столетия (ХIV-ХVI вв.). В Европе в этот период складывались новые организационные и материальные возможности для научного развития, разработки новых принципов познания действительности. Началась кардинальная ломка канонов схоластического, догматического мышления.
   Новые тенденции научной мысли нашли яркое выражение в творчестве величайших мыслителей – Н. Кузанского, Леонардо да Винчи, Н. Коперника, Д. Бруно.
   Но научная мысль Возрождения не смогла до конца освободиться от теологических элементов.

16. СТАНОВЛЕНИЕ И ОСНОВНЫЕ ХАРАКТЕРИСТИКИ КЛАССИЧЕСКОЙ НАУКИ И НАУЧНОЙ КАРТИНЫ МИРА В НОВОЕ ВРЕМЯ

   На смену Средневековью пришло Новое время, которое датируется ХVII-ХVIII вв.
   В социальной области в этот период происходили ранние буржуазные революции, положившие начало формированию капиталистического способа производства, который обусловил потребность в новой науке, развитии опытного знания как главного средства решения практически важных для производства того времени технологических задач.
   Революционную роль в развитии опытного естествознания сыграла созданная польским астрономом Н. Коперником гелиоцентрическая модель мира. Учение Н. Коперника привело к радикальному пересмотру представлений о мире. Гелиоцентризм (от греч. gelios – «солнце») давал совершенно иную схему движения небесных тел. Горячим сторонником этого учения стал И. Кеплер, который впервые заинтересовался идеей числовых соотношений между планетами.
   Но основы нового типа мировоззрения, новой науки были заложены Г. Гал1илеем. Большое значение он придавал математике, считал, что только она способна научить человека искусству доказательства. Г. Галилей в науке преуспел во многом: действенно поддержал коперниковскую теорию, постулировал полную подчиненность природы законам математики, ввел идею о силе как действующем механическом факторе, изложил основы современной механики и экспериментальной физики, обосновал принципы современного научного метода. Поэтому не случайно именно эта фигура отмечает рождение научного естествознания.
   Обоснование механического понимания природы философскими аргументами осуществил Р. Декарт.
   Завершил разработку механистической картины мира И. Ньютон. Опираясь на работы И. Кеплера, Г. Галилея, Р. Декарта, он сформулировал основные законы классической механики, открыл закон всемирного тяготения, принципы дифференциального исчисления, выдвинул основные положения теории света.
   Этап формирования классической науки характеризуется целым рядом специфических особенностей.
   1. Стремление к завершенной системе знаний, фиксирующей истину в окончательном виде. Это связано с ориентацией на классическую механику, представлявшую мир в виде гигантского механизма, четко функционирующего на основе вечных и неизменных законов механики. Поэтому механика рассматривалась как универсальный метод познания окружающих явлений и как эталон всякой науки вообще.
   2. Рассмотрение природы как неизменного целого. Данный методологический подход породил такие специфические для классической науки установки, как статизм, антиэволюционизм. Истолкование явлений реальности было в полной мере метафизическим, лишенным представлений об их изменчивости, развитии.
   3. Сведение Жизни и вечно живого на положение ничтожной подробности Космоса, отказ от признания их качественной специфики. Организм понимался как механизм. Бренность и ничтожность жизни как случайность в Космосе, казалось, все более подтверждались успехами точного знания.
   4. Наука вытеснила религию в качестве интеллектуального авторитета. Человеческий разум и практическое преобразование природы вытеснили теологическую доктрину. Вера и разум были разведены в разные стороны. Религия и философия были вынуждены сообразовывать свои позиции с наукой.

17. РЕВОЛЮЦИЯ В ЕСТЕСТВОЗНАНИИ КОНЦА ХIХ-НАЧАЛА ХХ ВВ. СТАНОВЛЕНИЕ ИДЕЙ И МЕТОДОВ НЕКЛАССИЧЕСКОЙ НАУКИ

   Эпоху конца ХIХ-начала ХХ в. открывает глобальная научная революция, связанная со становлением новой неклассической науки.
   В эту эпоху происходит своеобразная цепная реакция перемен в различных отраслях знания. Толчком к данным переменам был целый ряд ошеломляющих открытий в физике, разрушивших всю прежнюю картину мира. Сюда относятся открытие делимости атома, электромагнитных волн, радиоактивности, светового давления, введение идеи кванта, создание теории относительности, описание процесса радиоактивного распада. Под воздействием данных открытий разрушались прежние представления о материи и ее строении, свойствах, формах движения и типах закономерностей, о пространстве и времени. Это привело к кризису физики и всего естествознания, являвшегося симптомом более глубокого кризиса метафизических оснований классической науки.
   Второй этап революции начался в середине 20-х гг. ХХ в. и был связан с созданием квантовой механики и сочетанием ее с теорией относительности в новой квантово-релятивистской физической картине мира.
   Началом третьего этапа революции было овладение атомной энергией и последующие исследования, с которыми связано зарождение электронно-вычислительных машин и кибернетики. Также в этот период наряду с физикой стали лидировать химия, биология и цикл наук о Земле. Следует также отметить, что с середины ХХ в. наука окончательно слилась с техникой, приведя к современной научно-технической революции.
   В процессе всех этих революционных преобразований формировались идеалы и нормы новой неклассической науки.
   Они характеризовались отказом от прямолинейности рассуждений, пониманием относительной истинности теорий и картины природы. Осмысливались взаимодействия между основополагающими постулатами науки и характеристиками метода, посредством которого осваивается объект.
   Изменяются идеалы и обоснования знания. Вводится при изложении теорий новая система понятий. Новые познавательные идеалы и нормы обеспечивали расширение поля исследуемых объектов, открывая пути к освоению сложных самоорганизующихся систем.
   В новой картине мира природа и общество представлялись сложными динамическими системами. Этому способствовало открытие специфики законов микро-, макро– и мегамиров, интенсивное исследование механизмов наследственности с изучением уровней организации жизни, обнаружение кибернетикой общих законов управления и обратной связи. Сформировалось новое отношение к феномену жизни. Жизнь перестала казаться случайным явлением во Вселенной, а стала рассматриваться как закономерный результат саморазвития материи, также закономерно приведший к возникновению разума.
   Картины реальности, вырабатываемые в отдельных науках, на этом этапе еще сохраняли свою самостоятельность, но каждая из них участвовала в формировании представлений, включаемых в общенаучную картину мира.
   Радикально видоизменялись философские основания науки.
   Развитие новых представлений в физике, биологии, кибернетике видоизменяло смыслы категорий части и целого, причинности, случайности и необходимости, объекта, процесса, состояния и т. д.

18. КОНЦЕПТУАЛЬНО-МЕТОДОЛОГИЧЕСКИЕ СДВИГИ В ЕСТЕСТВОЗНАНИИ КОНЦА ХХ В

   Использование научных открытий для создания новых видов оружия и особенно создание атомной бомбы заставило человечество пересмотреть свою прежнюю безоговорочную веру в науку. Современная наука стала оцениваться критически. Многие деятели культуры считали, что техника дегуманизи-рует человека, окружая его искусственными предметами; она отнимает его у живой природы, ввергая в унифицированный мир, где цель поглощают средства, где промышленное производство превращает человека в придаток машины, где решение всех проблем видится в дальнейших технических достижениях. Под воздействием нескончаемых технических новшеств современная жизнь меняется с неслыханной быстротой.
   К этой гуманистической критике вскоре присоединились более тревожные факты неблагоприятных научных достижений. Опасное загрязнение воды, воздуха, почвы планеты, вредоносное воздействие на жизнь животных и растений, нарушения в экосистеме всей планеты – эти серьезные проблемы заявляли о себе все настойчивей.
   Эти факты, которые отчетливо проявляются в современной науке, говорят о ее кризисе, разрешить который сможет только новая глобальная мировоззренческая революция.
   К концу ХХ в. мир потерял веру в науку, она безвозвратно утратила свой прежний облик, оставила и свои прежние заявления об абсолютной непогрешимости своего знания. Поиск путей выхода из глобального кризиса еще только идет, черты будущего постмодернистского мировоззрения, как и новой постнеклассической науки, еще только намечаются.
   Нынешнее состояние науки характеризуется понятием «постмодерн».
   По мнению большинства ученых, будущая наука будет обладать следующими чертами.
   1. Наука должна будет осознать свое место в общей системе человеческой культуры и мировоззрения. Постмодернизм принципиально отвергает выделение какой-то одной сферы человеческой деятельности или одной черты в мировоззрении в качестве ведущей. Все, что создано человеком, является частью его культуры, важно и нужно для человека, выполняет свои собственные задачи, но имеет и свои границы применимости, которые нужно осознавать и не переходить. Именно это должна сделать постнеоклассическая наука – осознать пределы своей эффективности и плодотворности, признать равноправие таких сфер человеческой деятельности и культуры, как религия, философия, искус-ство, осознать возможность и результативность нерациональных способов освоения действительности.
   2. Модернистская наука ставила своей целью создание нового образа мира, полученного на основе концептуального единства, порядка, систематичности, непротиворечивости, тотальности, незыблемости. Постмодернистская наука больше интересуется образом самой себя как социокультурной реальности, допускает элементы субъективности в объективном знании. Полученный образ ориентирован на непрерывное обновление, открыт инновациям.
   3. В постмодернизме наблюдатель считает себя частью исследуемого мира, познание постнеоклассической науки диалогично.
   4. В основе постмодерна лежит идея всеединой, нелинейной, самоорганизующейся, саморегулирующейся системы.
   5. Важной чертой новой науки должна будет стать комплексность.

19. ПРОБЛЕМА УЧЕНИЯ О ВЗАИМОДЕЙСТВИИ

   Взаимодействие в физике – это воздействие тел или частиц друг на друга, приводящее к изменению состояния их движения. Именно взаимодействие – основная причина движения материи, поэтому взаимодействие, как и движение, универсально, т. е. присуще всем материальным объектам. В механике Ньютона взаимное действие тел друг на друга характеризуется силой.
   Первоначально в физике утвердилось представление о том, что взаимодействие между телами может осуществляться непосредственно через пустое пространство, которое не принимает никакого участия в передаче взаимодействия; при этом передача взаимодействия происходит мгновенно. Так, считалось, что перемещение Земли должно сразу же приводить к изменению силы тяготения, действующей на Луну. В этом состояла так называемая концепция дальнодействия, составляющая основу классической физики до конца XIX в.
   Однако данные представления были оставлены как не соответствующие действительности после открытия и исследования электромагнитного поля. Было доказано, что взаимодействие электрически заряженных тел не осуществляется мгновенно и перемещение одной заряженной частицы приводит к изменению сил, действующих на другие частицы, не в тот же момент, а спустя некоторое конечное время. В разделяющем частицы пространстве происходит некоторый процесс, который распространяется с конечной скоростью. Соответственно, имеется «посредник», осуществляющий взаимодействие между заряженными частицами. Этот посредник был назван электромагнитным полем. Каждая электрически заряженная частица создает электромагнитное поле, действующее на другие частицы. Скорость распространения электромагнитного поля равна скорости света в вакууме c3 X 10 " см/с. Возникла новая концепция – близ-кодействия, которая позже была распространена и на любые другие взаимодействия. Согласно этой концепции взаимодействие между телами осуществляется посредством тех или иных полей, непрерывно распределенных в пространстве. Эта по существу полевая концепция в квантовой теории поля дополняется утверждением: при любом взаимодействии происходит обмен особыми частицами.
   После появления квантовой теории поля представление о взаимодействии существенно изменилось. Согласно квантовой теории поля любое поле представляет собой совокупность частиц – квантов этого поля. Каждому полю соответствуют свои частицы. Например, квантами электромагнитного поля являются фотоны. Они обладают нулевой массой. Во многих случаях они регистрируются приборами в виде электромагнитной волны разной длины. Например, воспринимаемый невооруженным глазом видимый свет представляет собой электромагнитную волну в довольно узком диапазоне длин волн, соответствующем максимуму солнечного излучения. Аналогично другие виды взаимодействия возникают в результате обмена между частицами квантами соответствующих полей: переносчиками гравитационного взаимодействия являются гравитоны – частицы с нулевой массой; сильное взаимодействие передается глюонами – частицами, «склеивающими» кварки, входящие в состав протонов, нейтронов и других частиц; переносчиками слабого взаимодействия являются промежуточные, или векторные, бозоны.

20. ВЗАИМОДЕЙСТВИЕ И СВЯЗЬ В ПРИРОДЕ

   Под энергией связи понимают энергию связанной системы каких-либо частиц, равную работе, которую необходимо затратить, чтобы разделить эту систему на составляющие ее частицы и удалить их друг от друга на такое расстояние, на котором их взаимодействием можно пренебречь. Энергия связи определяется взаимодействием частиц и является отрицательной величиной, так как при образовании связанной системы энергия выделяется. Абсолютная величина энергии связи характеризует прочность связи и устойчивость системы. Например, для атомного ядра энергия связи определяется сильным взаимодействием нуклонов в ядре. Для наиболее устойчивых ядер она составляет 8 X 10 эВ/нуклон (удельная энергия связи – энергия связи, приходящаяся на один нуклон). Эта энергия может выделиться при слиянии легких ядер в более тяжелое ядро (термоядерная реакция), а также при спонтанном делении тяжелых ядер. Термоядерные реакции происходят при очень высоких температурах. Такие температуры необходимы для преодоления электростатического барьера, обусловленного взаимным отталкиванием ядер (как одноименно заряженных частиц). Без этого невозможно сближение ядер на расстояние порядка радиуса действия ядерных сил. Поэтому термоядерные реакции в природных условиях протекают лишь в недрах звезд. Так как термоядерные реакции представляют собой процессы образования сильно связанных ядер из более рыхлых, то они сопровождаются выделением в продуктах реакции избыточной кинетической энергии, равной увеличению суммарной энергии связи. На использовании этой выделившейся энергии основана ядерная энергетика.
   Энергия связи, электронов в атоме или молекуле определяется электромагнитным взаимодействием. Для атома водорода в основном состоянии она равна 13,6 эВ. Этим же взаимодействием обусловлена энергия связи атомов в молекуле и кристалле. Например, ковалентное межатомное взаимодействие возникает в результате обобществления валентных электронов парой соседних атомов, при этом происходит понижение энергии.
   Энергия связи, обусловленная гравитационным взаимодействием, обычно мала и имеет значение лишь для некоторых космических объектов, например для черных дыр. Они возникают в результате сжатия тела гравитационными силами до размеров, меньших его гравитационного радиуса: rx = 2GM /c2 где М– масса тела, G-гравитационная постоянная, с – численное значение скорости света).
   Черной дырой может стать звезда. У вращающейся черной дыры вне горизонта (области, за которую не выходит свет) существует особая область – эрго-сфера. Вещество, попавшее в эргосферу, неизбежно начинает вращаться вокруг черной дыры. Наличие эргосферы может привести к потере черной дырой энергии вращения. Это возможно в случае, когда некоторое тело, влетев в эргосферу, распадается на две части, причем одна из них продолжает падение на черную дыру, а другая вылетает из эргосферы по направлению вращения. Энергия вылетающей части может при определенных условиях превышать первоначальную энергию всего тела.
   Таким образом, понятие энергии связи ядра играет особо важную роль в ядерной физике. Энергия связи позволяет объяснить устойчивость ядер, а также выяснить, какие процессы ведут к выделению ядерной энергии.

21. ОБЩАЯ ХАРАКТЕРИСТИКА ФИЗИЧЕСКОГО ВЗАИМОДЕЙСТВИЯ

   Одно из определений физики как науки таково: физика является учением о различных типах взаимодействий. Взаимодействие является основной причиной движения материи. Оно присуще всем материальным объектам, т. е. можно сделать вывод, что взаимодействие универсально, как и движение.
   Основными характеристиками движения являются энергия и импульс, и именно энергией и импульсом обмениваются объекты при взаимодействии. В классической механике взаимодействие определяется силой, с которой один материальный объект действует на другой. В более общем случае взаимодействие характеризуется потенциальной энергией.
   О том, как осуществляется взаимодействие между объектами, существует две концепции: близ-кодействия и дальнодействия. Первая теория говорит о том, что взаимодействие материальных объектов передается через пустое пространство мгновенно. Эта теория служила основой классической физики и существовала до конца XIX в. В настоящее время экспериментально подтверждена концепция дальнодействия: взаимодействия передаются посредством физических полей с конечной скоростью, не превышающей скорости света в вакууме.
   Взаимодействия материальных объектов и систем, наблюдаемые нами в окружающем мире, весьма разнообразны. Но в общем случае их можно отнести к четырем видам фундаментальных взаимодействий: гравитационному, электромагнитному, слабому и сильному. Гравитационное взаимодействие проявляется во взаимном притяжении любых материальных объектов, имеющих массу. Электромагнитное взаимодействие обусловлено электрическими зарядами и передается посредством электрического и магнитного полей. Сильное взаимодействие обеспечивает связь нуклонов в ядре и определяется ядерными силами. Слабое взаимодействие обусловливает большинство распадов элементарных частиц, взаимодействие нейтрино с веществом и другие процессы.
   Для количественной характеристики фундаментальных взаимодействий обычно используют безразмерную константу взаимодействия, определяющую величину взаимодействия и радиус действия. Для гравитационного взаимодействия эта константа равна 6 × 10-39, а радиус его действия бесконечен. Для электромагнитного взаимодействия значение константы составляет 1/137, а радиус его действия также неограничен. Константа сильного взаимодействия равна 1, оно проявляется в пределах размеров ядра. Для слабого взаимодействия постоянная равна 10-14, а радиус взаимодействия – порядка 10-18.
   Фундаментальные взаимодействия характеризуются соответствующими константами, которые в зависимости от систем координат могут иметь различные значения. Обычно используются следующие значения этих констант. Гравитационное взаимодействие характеризуется постоянной Кавендиша Gm= 6,7 × 10-11 н × м2/кг2. Слабое взаимодействие – универсальной постоянной Gm= 1,4 × 10-62 Дж × м3. Электромагнитное и сильное взаимодействия обычно характеризуются безразмерными постоянными. Первое – ge=1/137 – так называемая «постоянная тонкой структуры»; второе – g5= 8 × 10-2.
   Создание единой теории фундаментальных взаимодействий – одна из важнейших задач современного естествознания. Предполагается, что при относительно больших энергиях взаимодействия частиц все четыре фундаментальных взаимодействия характеризуются единой силой.

22. ФУНДАМЕНТАЛЬНЫЕ ФИЗИЧЕСКИЕ ВЗАИМОДЕЙСТВИЯ: ГРАВИТАЦИОННОЕ, ЭЛЕКТРОМАГНИТНОЕ, СЛАБОЕ И СИЛЬНОЕ

   Наблюдаемые в природе взаимодействия материальных объектов и систем весьма разнообразны. Однако, как показали физические исследования, все взаимодействия можно отнести к четырем видам фундаментальных взаимодействий:
   – гравитационному;
   – электромагнитному;
   – сильному;
   – слабому.
   Гравитационное взаимодействие проявляется во взаимном притяжении любых материальных объектов, имеющих массу. Оно передается посредством гравитационного поля и определяется фундаментальным законом природы – законом всемирного тяготения, сформулированным И. Ньютоном: между двумя материальными точками массой m1 и m2, расположенными на расстоянии rдруг от друга, действует сила F, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними:
   F = G × (m1m2)/r2. где G-гравитационная постоянная. В соответствии с квантовой теорией г' поля переносчиками гравитационного взаимодействия являются гравитоны – частицы с нулевой массой, кванты гравитационного поля.
   Электромагнитное взаимодействие обусловлено электрическими зарядами и передается посредством электрического и магнитного полей. Электрическое поле возникает при наличии электрических зарядов, а магнитное – при их движении. Изменяющееся магнитное поле порождает переменное электрическое поле, которое в свою очередь является источником переменного магнитного поля.
   
Купить и читать книгу за 14 руб.

Вы читаете ознакомительный отрывок. Если книга вам понравилась, вы можете купить полную версию и продолжить читать