Назад

Купить и читать книгу за 199 руб.

Вы читаете ознакомительный отрывок. Если книга вам понравилась, вы можете купить полную версию и продолжить читать

Гистология. Полный курс за 3 дня

   Представленный вашему вниманию полный курс предназначен для подготовки студентов медицинских вузов к сдаче экзаменов. Книга включает в себя лекции по гистологии, написана доступным языком и будет незаменимым помощником для тех, кто желает быстро подготовиться к экзамену и успешно его сдать.


Селезнева Т. Д., Мишин А. С., Барсуков В. Ю. Гистология. Полный курс за 3 дня

РАЗДЕЛ I. ОБЩАЯ ГИСТОЛОГИЯ

Тема 1. ИСТОРИЯ РАЗВИТИЯ ГИСТОЛОГИИ. РАЗВИТИЕ ГИСТОЛОГИИ В РОССИИ

   В истории развития гистологии можно выделить три основных периода: домикроскопический, микроскопический и современный.
   Домикроскопический период (с начала V в. до н. э. и по 1665 г.) связан с именами Аристотеля, Галена, Везалия и других великих ученых того времени. Данный период развития гистологии характеризуется попытками выделения в организмах животных и человека неоднородных тканей с использованием методов анатомического препарирования.
   Микроскопический период – 1665 – 1950 гг. Начало этого периода связано с именем английского физика Р. Гука, который изобрел микроскоп и использовал его для систематического исследования различных, в том числе и биологических, объектов. Результаты своих исследований он опубликовал в книге «Монография». Р. Гук впервые ввел термин «клетка». В дальнейшем происходило непрерывное усовершенствование микроскопов и все более широкое их использование для изучения биологических тканей и органов. Особенное внимание при этом уделялось строению клетки. Среди выдающихся ученых того времени можно выделить М. Мальпиги, А. Левенгука, Н. Грю.
   Я. Пуркинье описал наличие в животных клетках цитоплазмы и ядра, а несколько позже Р. Браун обнаружил ядро в растительных клетках. Ботаник М. Шлейден занимался исследованием происхождения клеток – цитокинезисом. В результате своих исследований Т. Шванн сформулировал клеточную теорию:
   1) все растительные и животные организмы состоят из клеток;
   2) все клетки развиваются по общему принципу – из цитобластомы;
   3) каждая клетка обладает самостоятельной жизнедеятельностью, а жизнедеятельность организма является суммой деятельности клеток.
   Р. Вирхов в 1858 г. уточнил, что развитие клеток осуществляется путем деления исходной клетки. Разработанная Т. Шванном теория актуальна до настоящего времени.
   Современные положения клеточной теории:
   1) клетка является наименьшей единицей живого;
   2) клетки животных организмов сходны по своему строению;
   3) размножение клеток происходит путем деления исходной клетки;
   4) многоклеточные организмы представляют собой сложные ассоциации клеток и их производных, объединенные в системы тканей и органов и связанные между собой клеточными, гуморальными и нервными механизмами регуляции.
   Дальнейшее совершенствование микроскопов позволило выявить в клетках более мелкие структуры:
   1) пластинчатый комплекс (К. Гольджи – 1897 г.);
   2) митохондрии (Э ван Бенда – 1897 г.);
   3) центриоли ( Т. Бовери – 1895 г.);
   4) эндоплазматическую сеть (К. Портер – 1945 г.);
   5) лизосомы (К. Дюв – 1949 г.).
   Были описаны механизмы деления растительных (И. Д. Чистяков, 1874 г.) и животных клеток (П. И. Перемежко, 1978 г.).
   Современный этап развития гистологии начался с 1950 г., когда впервые электронный микроскоп был применен для изучения биологических объектов. Однако для современного этапа развития гистологии характерно внедрение не только электронной микроскопии, но и других методов: цито– и гистохимии, гисторадиографии и т. д. При этом обычно используется комплекс различных методов, позволяющих составить не только качественное представление об изучаемых структурах, но и получить тонкие количественные характеристики. Особенно широко в настоящее время применяются различные морфометрические методы, в том числе и автоматизированная обработка полученной информации с использованием персонального компьютера.
   Гистологию в России развивали ученые медицинских факультетов российских вузов, где сформировались сильные гистологические школы:
   1) Московская школа (А. И. Бабухин, И. Ф. Огнев). Основное направление деятельности – гистогенез мышечной и нервной ткани, гистофизиологические подходы к изучению органов чувств, особенно органа зрения;
   2) Петербургская гистологическая школа при Медико-хирургической академии (К. Э. Бэр – эмбриолог, Н. М. Якубович, М. Д. Лавдовский – нейрогистолог и А. А. Максимов – автор унитарной теории кроветворения);
   3) Петербургская гистологическая школа при университете (Ф. В. Овсянников – исследования органов чувств, А. С. Догель – нейрогистолог и др.);
   4) Киевская гистологическая школа (П. И. Перемежко изучал деление клеток, развитие органов);
   5) Казанская гистологическая школа – К. А. Арнштейн, А. С. Догель, А. Е. Смирнов, Т. А. Тимофеев, Б. И. Лаврентьев. Данная школа развивала нейрогистологическое направление.
   Наиболее крупными учеными в области гистологии в России были А. А. Заварзин и Н. Г. Хлопин, занимавшиеся исследованием закономерностей развития тканей в филогенезе.

Тема 2. МЕТОДЫ ИССЛЕДОВАНИЯ В ГИСТОЛОГИИ. ПРИГОТОВЛЕНИЕ ГИСТОЛОГИЧЕСКОГО ПРЕПАРАТА

   Основным методом исследования в гистологии является микроскопирование – изучение гистологических препаратов под микроскопом. В последнее время микроскопия сочетается с другими методами – гистохимией и гисторадиографией. Для микроскопии используют различные конструкции микроскопов, позволяющие изучать различные параметры гистологических препаратов.
   Выделяются следующие виды микроскопии:
   1) световая микроскопия (наиболее распространенный вид микроскопии, при этом разрешающая способность микроскопа составляет 0,2 мкм);
   2) ультрафиолетовая микроскопия (разрешающая способность микроскопа составляет 0,1 мкм);
   3) люминисцентная микроскопия (применяется для определения в исследуемом гистологическом препарате определенных химических структур);
   4) фазово-контрастная микроскопия (применяется для обнаружения и изучения определенных структур в неокрашенных гистологических препаратах);
   5) поляризационная микроскопия (используется в основном для изучения волокнистых структур);
   6) микроскопия в темном поле применяется для изучения живых объектов;
   7) микроскопия в падающем свете (предназначена для изучения толстых объектов);
   8) электронная микроскопия (наиболее современный вид микроскопии, имеющий разрешающую способность 0,1 – 0,7 нм). Имеются две разновидности электронной микроскопии – просвечивающая (трансмиссионная) и сканирующая (или растворная) микроскопия, дающая отображение поверхностных ультраструктур.
   Гистологические и цитохимические методы применяются для определения состава химических веществ и их количества в определенных структурах. Принцип метода заключается в химической реакции между реактивом и субстратом, содержащимся в исследуемом веществе. При этом образующиеся побочные продукты реакции можно обнаружить с помощью световой или люминисцентной микроскопии.
   Метод гистоавторадиографии позволяет выявить состав химических веществ в исследуемых структурах и интенсивность обмена по включению радиоактивных изотопов. Данный метод чаще всего используется при экспериментах на животных.
   Метод интерферонометрии позволяет определять сухую массу вещества в живых или фиксированных объектах.
   Метод культуры клеток – это выращивание клеток в пробирках или в особых капсулах в организме и последующее изучение живых клеток под микроскопом.
   Метод витального окрашивания – введение животным в кровь или в брюшную полость красителя (трепанового синего), который при жизни животного захватывается определенными клетками – макрофагами, а после забоя животного и приготовления препарата определяются и подсчитываются клетки, содержащие краситель.
   Иммуноморфологические методы позволяют с помощью предварительно проведенных иммунных реакций (на основе взаимодействия антиген – антитело) определять субпопуляцию лимфоцитов, степень чужеродности клеток, проводить гистологическое типирование тканей и органов, т. е. определять их гистосовместимость для дальнейшей трасплантации.
   Метод дифференциального центрифугирования – изучение отдельных органелл или даже их фрагментов, выделенных из клетки. Для этого кусочек исследуемого органа растирают, заливают физиологическим раствором, а затем разгоняют в центрифуге при различных оборотах (от 2 до 150 тыс. в 1 мин). В результате центрифугирования получают интересующие фракции, которые затем изучают различными методами.
   Методы морфометрии – количественные методы. Они позволяют определять размеры и объемы ядра – кариометрия, клеток – цитометрия, органелл – электронная морфометрия, а также определять число клеток различных популяций и субпопуляций. Данные методы широко используются в научных исследованиях.
   Различные экспериментальные методы – пищевая и водная нагрузка, физические методы (УВЧ, СВЧ, лазеры, магниты). Они применяются для изучения реакции интересующих структур на то или иное воздействие и сочетаются с методами морфометрии, цито– и гистохимии. Данные методы также применяются в научных исследованиях.
   Таким образом, основным и наиболее распространенным методом изучения в гистологии является микроскопия. Приготовление гистологического препарата включает в себя следующие этапы.
   1. Взятие материала – кусочка ткани или органа. При заборе материала необходимо выполнять следующие правила:
   1) забор материала должен проводиться как можно раньше после смерти или забоя животного, при возможности от живого объекта, чтобы как можно лучше сохранить структуру исследуемых клеток;
   2) забор материала должен проводиться острым инструментом, чтобы не травмировать ткани;
   3) толщина кусочка не должна превышать 5 мм, чтобы фиксирующий раствор смог проникнуть на всю глубину ткани;
   4) обязательно необходимо произвести маркировку кусочка, при этом указываются наименование органа, номер животного или фамилия человека, дата забора.
   2. Фиксация материала. Данный этап проводится для того, чтобы остановить обменные процессы в клетке и сохранить ее от распада. Для этого взятый на исследование кусочек ткани погружают в фиксирующий раствор. Раствор может быть простым (спирт или формалин) и сложным (раствор Карнуа, фиксатор Цинкера). Фиксатор вызывает денатурацию белков и сохраняет структуру клеток в состоянии, близком к прижизненному. Фиксацию можно проводить также путем замораживания – охлаждением жидким азотом или струей углекислого газа.
   3. Заливка кусочков ткани в уплотняющие среды (парафин, смолы) – или замораживание. Данный этап необходим для того, чтобы в последующем из исследуемой ткани можно было изготовить тонкий срез.
   4. Приготовление срезов на микротоме или ультрамикротоме с помощью специальных ножей. После этого срезы для световой микроскопии приклеиваются на предметные стекла, а для электронной – монтируются на специальные сеточки.
   5. Окраска срезов или их контрастирование (для электронной микроскопии). Перед окраской срезов необходимо удалить уплотняющую среду – выполнить депарафирование. С помощью окраски достигается контрастность изучаемых структур. Красители можно подразделить на основные, кислые и нейтральные. Наиболее широко применяются основные красители (гематоксилин) и кислые (эозин). Часто используются и сложные красители.
   6. Просветление срезов в ксилоле и толуоле. Их заключают в смолы (бальзам и полистирол) и закрывают покровным стеклом.
   После данных процедур препарат можно исследовать под световым микроскопом. Помещенные под стекло срезы для светового микроскопа могут долго храниться и многократно использоваться. Для электронной микроскопии каждый срез используется только 1 раз, при этом он фотографируется, и изучение структур ткани производится по электронограмме.
   Если ткань имеет жидкую консистенцию (например, кровь, костный мозг), то препарат изготавливают в виде мазка на предметном стекле, который затем также фиксируется, окрашивается и изучается.
   Из ломких паренхиматозных органов изготавливают препараты в виде отпечатка органа, проводят разлом данного органа, затем к месту разлома прикладывают предметное стекло, на которое приклеиваются свободные клетки. После этого препарат фиксируется и изучается.
   Из некоторых органов (например, брыжейки, мягкой мозговой оболочки) или из рыхлой волокнистой соединительной ткани изготавливают пленочные препараты путем растягивания или раздавления между двумя стеклами с последующей фиксацией и заливкой в смолы.

Тема 3. ВВЕДЕНИЕ В КУРС ГИСТОЛОГИИ

   Гистология – наука о строении, развитии и жизнедеятельности тканей живых организмов. Следовательно, гистология изучает один из уровней организации живой материи – тканевый.
   Различают следующие уровни организации живой материи:
   1) клеточный;
   2) тканевый;
   3) структурно-функциональные единицы органа;
   4) органный;
   5) системный;
   6) организменный;
   7) популяционный и другие уровни.
   Гистология рассматривается как дисциплина, включающая в себя четыре основных раздела:
   1) цитологию, она изучающую строение клетки;
   2) эмбриологию, изучающую формирование клеток и тканей во время внутриутробного развития;
   3) общую гистологию – изучает структуру, функциональные, клеточные элементы различных тканей;
   4) частную (или макроскопическую) гистологию, изучающую структуры определенных органов и их систем.
   Таким образом, в гистологии имеется несколько разделов, изучающих определенные уровни организации живой материи, начиная с клеточного и заканчивая органным и системным, составляющим организм.
   Гистология относится к морфологическим наукам. В отличие от анатомии, изучающей строение органов на макроскопическом уровне, гистология изучает строение органов и тканей на микроскопическом и электронно-микроскопическом уровне. При этом подход к изучению различных элементов производится с учетом выполняемой ими функции. Такой метод изучения структур живой материи называется гистофизиологическим, и гистология нередко именуется гистофизиологией. При изучении живой материи на клеточном, тканевом и органном уровнях рассматриваются не только форма, размеры и расположение интересующих структур, но методами цито– и гистохимии определяется химический состав веществ, образующих данные структуры. Изучаемые структуры также рассматриваются с учетом их развития как во внутриутробном периоде, так и на протяжении начального онтогенеза. Именно с этим связана необходимость включения в гистологию эмбриологии.
   Основным объектом гистологии в системе медицинского образования является организм здорового человека, и потому данная учебная дисциплина именуется как гистология человека.
   Главной задачей гистологии как учебного предмета является изложение знаний о микроскопическом и ультрамикроскопическом (электронно-микроскопическом) строении клеток, тканей органов и систем здорового человека в неразрывной связи с их развитием и выполняемыми функциями. Это необходимо для дальнейшего изучения физиологии человека, патологической анатомии, патологической физиологии и фармакологии. Знание этих дисциплин формирует клиническое мышление.
   Задачей гистологии как науки является выяснение закономерностей строения различных тканей и органов для понимания протекающих в них физиологических процессов и возможности управления этими процессами.

Тема 4. МОРФОЛОГИЯ И ФУНКЦИИ ЦИТОПЛАЗМЫ И ОРГАНЕЛЛ КЛЕТКИ

   Цитология – наука о строении, развитии и жизнедеятельности клеток. Следовательно, цитология изучает закономерности структурно-функциональной организации первого (клеточного) уровня организации живой материи. Клетка является наименьшей единицей живой материи, обладающей самостоятельной жизнедеятельностью и способностью к самовоспроизведению. Субклеточные образования (ядро, митохондрии и другие органеллы) хотя и являются живыми структурами, но не обладают самостоятельной жизнедеятельностью.
   Клетка – это ограниченная активной мембраной, упорядоченная, структурированная система биополимеров, образующих ядро и цитоплазму, участвующих в единой совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом.
   Клетка – это живая система, состоящая из цитоплазмы и ядра и являющаяся основой строения, развития и жизнедеятельности всех животных организмов.
   Основные компоненты клетки:
   1) ядро;
   2) цитоплазма.
   По соотношению ядра и цитоплазмы (ядерно-цитоплазматическому отношению) клетки подразделяются на:
   1) клетки ядерного типа (объем ядра преобладает над объемом цитоплазмы);
   2) клетки цитоплазматического типа (цитоплазма преобладает над ядром).
   По форме клетки бывают круглыми (клетки крови), плоскими, кубическими или призматическими (клетки разного эпителия), веретенообразными (гладкомышечные клетки), отростчатыми (нервные клетки) и др. Большинство клеток содержат одно ядро, однако в одной клетке может быть 2, 3 и более ядер (многоядерные клетки). В организме имеются структуры (симпласты, синцитий), содержащие несколько десятков или даже сотен ядер. Однако эти структуры образуются или в результате слияния отдельных клеток (симпласты), или в результате неполного деления клеток (синцитий). Морфология этих структур будет рассмотрена при изучении тканей.
   Структурные компоненты цитоплазмы животной клетки:
   1) плазмолемма (цитолемма);
   2) гиалоплазма;
   3) органеллы;
   4) включения.
   Плазмолемму, окружающую цитоплазму, нередко рассматривают как одну из органелл цитоплазмы.
   Плазмолемма (цитолемма)
   Плазмолемма – оболочка животной клетки, отграничивающая ее внутреннюю среду и обеспечивающая взаимодействие клетки с внеклеточной средой.
   Функции плазмолеммы:
   1) разграничительная (барьерная);
   2) рецепторная;
   3) антигенная;
   4) транспортная;
   5) образование межклеточных контактов.
   Химический состав веществ плазмолеммы: белки, липиды, углеводы.
   Строение плазмолеммы:
   1) двойной слой липидных молекул, составляющий основу плазмолеммы, в которую местами включены молекулы белков;
   2) надмембранный слой;
   3) подмембранный слой, имеющийся в некоторых клетках.
   В каждой липидной молекуле различают две части:
   1) гидрофильную головку;
   2) гидрофобные хвосты.
   Гидрофобные хвосты липидных молекул связываются друг с другом и образуют билипидный слой. Гидрофильные головки соприкасаются с внешней и внутренней средой.
   Белковые молекулы встроены в билипидный слой мембраны локально и не образуют сплошного слоя. По выполняемой функции белки плазмолеммы подразделяются на:
   1) структурные;
   2) транспортные;
   3) белки-рецепторы;
   4) белки-ферменты;
   5) антигенные детерминанты.
   Находящиеся на внешней поверхности плазмолеммы белки и гидрофильные головки липидов обычно связаны с цепочками углеводов и образуют сложные полимерные молекулы. Именно эти макромолекулы и составляют надмембранный слой – гликокаликс. Значительная часть поверхностных гликопротеидов и гликолипидов выполняет в норме рецепторные функции: воспринимает гормоны и другие биологически активные вещества. Такие клеточные рецепторы передают воспринимаемые сигналы на внутриклеточные ферментные системы, усиливая или угнетая обмен веществ, и тем самым оказывают влияние на функции клеток.
   Различают следующие способы транспорта веществ:
   1) способ диффузии веществ (ионов, некоторых низкомолекулярных веществ) через плазмолемму без затраты энергии;
   2) активный транспорт веществ (аминокислот, нуклеотидов и др.) с помощью белков-переносчиков с затратой энергии;
   3) везикулярный транспорт (производится посредством везикул (пузырьков)). Подразделяется на эндоцитоз – транспорт веществ в клетку, экзоцитоз – транспорт веществ из клетки.
   В свою очередь, эндоцитоз подразделяется на:
   1) фагоцитоз – захват и перемещение в клетку;
   2) пиноцитоз – перенос воды и небольших молекул.
   Процесс фагоцитоза подразделяется на несколько фаз:
   1) адгезию (прилипание) объекта к цитолемме фагоцитирующей клетки;
   2) поглощение объекта путем образования вначале углубления инвагинации, а затем передвижения ее в гиалоплазму.
   В тех тканях, в которых клетки или их отростки плотно прилежат друг к другу (эпителиальная, гладкомышечная и др.), между плазмолеммами контактирующих клеток формируются связи – межклеточные контакты.
   Типы межклеточных контактов:
   1) простой контакт – 15 – 20 нм (связь осуществляется за счет соприкосновения макромолекул гликокаликсов). Простые контакты занимают наиболее обширные участки соприкасающихся клеток. При помощи простых контактов осуществляется слабая связь – адгезия, не препятствующая транспортированию веществ в межклеточные пространства. Разновидностью простого контакта является контакт типа замка, когда плазмолеммы соседних клеток вместе с участками цитоплазмы как бы впячиваются друг в друга, чем достигается увеличение площади соприкасающихся поверхностей и более прочная механическая связь;
   2) десмосомный контакт – 0,5 мкм. Десмосомные контакты (или пятна сцепления) представляют собой небольшие участки взаимодействия между клетками. Каждый такой участок имеет трехслойное строение и состоит из двух полудесмосом – электронноплотных участков, расположенных в цитоплазме в местах контакта клеток, и скопления электронноплотного материала в межмембранном пространстве – 15 – 20 нм. Количество десмосомных контактов у одной клетки может достигать 2000. Функциональная роль десмосом – обеспечение механического контакта между клетками;
   3) плотный контакт. Данный контакт называют также замыкательными пластинками. Они локализуются в органах (желудке, кишечнике), в которых эпителий отграничивает агрессивное содержимое данных органов, например желудочный сок, содержащий соляную кислоту. Плотные контакты находятся только между апикальными частями клеток, охватывая по всему периметру каждую клетку. В этих участках межмембранные пространства отсутствуют, а билипидные мембраны соседних клеток сливаются в единую билипидную мембрану. В прилежащих участках цитоплазмы соприкасающихся клеток отмечают скопление электронноплотного материала. Функциональная роль плотных контактов – прочная механическая связь клеток, препятствие транспорту веществ по межклеточным пространствам;
   4) щелевидный контакт (или нексусы) – 0,5 – 3 мкм (обе мембраны пронизаны в поперечном направлении белковыми молекулами (или коннексонами), содержащими гидрофильные каналы, через которые осуществляется обмен ионами и микромолекулами соседних клеток, чем и обеспечивается их функциональная связь). Данные контакты представляют собой ограниченные участки контактов соседних клеток. Примером щелевидных контактов (нексусов) служат контакты кардиомиоцитов, при этом через них происходит распространение биопотенциалов и содружественное сокращение сердечной мускулатуры;
   5) синаптический контакт (или синапс) – специфические контакты между нервными клетками (межнейронные синапсы) или между нервными и мышечными клетками (мионевральные синапсы). Функциональная роль синапсов – передача нервного импульса или волны возбуждения (торможения) с одной клетки на другую или с нервной клетки на мышечную.
   Гиалоплазма
   Гиалоплазма (или матрикс цитоплазмы) составляет внутреннюю среду клетки. Состоит из воды и различных биополимеро в (белков, нуклеиновых кислот, полисахаридов, липидов), из которых основную часть составляют белки различной химической и функциональной специфичности. В гиалоплазме содержатся также аминокислоты, моносахара, нуклеотиды и другие низкомолекулярные вещества.
   Биополимеры образуют с водой коллоидную среду, которая в зависимости от условий может быть плотной (в форме геля) или более жидкой (в форме золя), как во всей цитоплазме, так и в отдельных ее участках. В гиалоплазме локализуются и взаимодействуют между собой и средой гиалоплазмы различные органеллы и включения. При этом расположение их чаще всего специфично для определенных типов клеток. Через билипидную мембрану гиалоплазма взаимодействует с внеклеточной средой. Следовательно, гиалоплазма является динамической средой и играет важную роль в функционировании отдельных органелл и жизнедеятельности клеток в целом.
   Органеллы
   Органеллы – постоянные структурные элементы цитоплазмы клетки, имеющие специфическое строение и выполняющие определенные функции.
   Классификация органелл:
   1) общие органеллы, присущие всем клеткам и обеспечивающие различные стороны жизнедеятельности клетки;
   2) специальные органеллы, имеющиеся в цитоплазме только определенных клеток и выполняющие специфические функции этих клеток.
   В свою очередь, общие органеллы подразделяются на мембранные и немембранные.
   Специальные органеллы подразделяются на:
   1) цитоплазматические (миофибриллы, нейрофибриллы, тонофибриллы);
   2) органеллы клеточной поверхности (реснички, жгутики).
   К мембранным органеллам относятся:
   1) митохондрии;
   2) эндоплазматическая сеть;
   3) пластинчатый комплекс;
   4) лизосомы;
   5) пероксисомы.
   К немембранным органеллам относятся:
   1) рибосомы;
   2) клеточный центр;
   3) микротрубочки;
   4) микрофибриллы;
   5) микрофиламенты.
   Принцип строения мембранных органелл
   Мембранные органеллы представляют собой замкнутые и изолированные участки (компартменты) в гиалоплазме, имеющие свою внутреннюю структуру. Стенка их состоит из билипидной мембраны и белков подобно плазмолемме. Однако билипидные мембраны органелл имеют особенности: толщина билипидных мембран органелл меньше, чем плазмолеммы (7 нм против 10 нм), мембранные отличаются по количеству и по содержанию белков, встроенных в них.
   Однако, несмотря на различия, мембраны органелл имеют одинаковый принцип строения, поэтому они обладают способностью взаимодействовать друг с другом, встраиваться, сливаться, разъединяться, отшнуровываться.
   Общий принцип строения мембран органелл можно объяснить тем, что все они образуются в эндоплазматической сети, а затем происходит их функциональная перестройка в комплексе Гольджи.
   Митохондрии
   Митохондрии – наиболее обособленные структурные элементы цитоплазмы клетки, обладающие в значительной степени самостоятельной жизнедеятельностью.
   Существует мнение, что в прошлом митохондрии были самостоятельными живыми организмами, после чего внедрились в цитоплазму клеток, где ведут сапрофитное существование. Доказательством этого может являться наличие у митохондрий генетического аппарата (митохондриальной ДНК) и синтетического аппарата (митохондриальных рибосом).
   Форма митохондрий может быть овальной, округлой, вытянутой и даже разветвленной, но преобладает овально-вытянутая. Стенка митохондрий образована двумя билипидными мембранами, разделенными пространством в 10 – 20 нм. При этом внешняя мембрана охватывает по периферии всю митохондрию в виде мешка и отграничивает ее от гиалоплазмы. Внутренняя мембрана отграничивает внутреннюю среду митохондрии, при этом она образует внутри митохондрии складки – кристы. Внутренняя среда митохондрии (митохондриальный матрикс) имеет тонкозернистое строение и содержит гранулы (митохондриальные ДНК и рибосомы).
   Функция митохондрий – образование энергии в виде АТФ.
   Источником образования энергии в митохондриях является пировиноградная кислота (пируват), которая образуется из белков, жиров и углеводов в гиалоплазме. Окисление пирувата происходит в митохондриальном матриксе, а на кристах митохондрий осуществляется перенос электронов, фосфорилирование АДФ и образование АТФ. Образующаяся в митохондриях АТФ является единственной формой энергии, которая используется клеткой для выполнения различных процессов.
   Эндоплазматическая сеть
   Эндоплазматическая сеть (ЭПС) в разных клетках может быть представлена в форме уплощенных цистерн, канальцев или отдельных везикул. Стенка состоит из билипидной мембраны.
   Различают две разновидности ЭПС:
   1) зернистую (гранулярную, или шероховатую);
   2) незернистую (или гладкую). На наружной поверхности мембран зернистой ЭПС содержатся прикрепленные рибосомы.
   В цитоплазме при электронно-микроскопическом исследовании можно обнаружить два вида ЭПС, однако один из них преобладает, что и определяет функциональную специфичность клетки. Эти две разновидности ЭПС не являются самостоятельными и обособленными формами, так как при более детальном исследовании можно обнаружить переход одной разновидности в другую.
   Функции зернистой ЭПС:
   1) синтез белков, предназначенных для выведения из клетки (на экспорт);
   2) отделение (сегрегация) синтезированного продукта от гиалоплазмы;
   3) конденсация и модификация синтезированного белка;
   4) транспорт синтезированных продуктов в цистерны пластинчатого комплекса;
   5) синтез компонентов билипидных мембран.
   Функции гладкой ЭПС:
   1) участие в синтезе гликогена;
   2) синтез липидов;
   3) дезинтоксикационная функция (нейтрализация токсических веществ посредством соединения их с другими веществами).
   Пластинчатый комплекс Гольджи
   Пластинчатый комплекс называют транспортным аппаратом клетки.
   Пластинчатый комплекс Гольджи (сетчатый аппарат) представлен скоплением уплощенных цистерн и небольших везикул, ограниченных билипидной мембраной. Пластинчатый комплекс подразделяется на субъединицы – диктиосомы. Каждая диктиосома представляет собой стопку уплощенных цистерн, по периферии которых локализуются мелкие пузырьки. При этом в каждой уплощенной цистерне периферическая часть несколько расширена, а центральная сужена. В диктиосоме различают два полюса: цисполюс (направленный основанием к ядру) и трансполюс (направленный в сторону цитолеммы). Установлено, что к цисполюсу подходят транспортные вакуоли, несущие в комплекс Гольджи продукты, синтезированные в ЭПС. От трансполюса отшнуровываются пузырьки, несущие секрет к плазмолемме для его высвобождения из клетки. Часть мелких пузырьков, заполненных белками-ферментами, остается в цитоплазме и носит название лизосом.
   Функция пластинчатого комплекса:
   1) транспортная (выводит из клетки синтезированные в ней продукты);
   2) конденсация и модификация веществ, синтезированных в зернистой ЭПС;
   3) образование лизосом (совместно с зернистой ЭПС);
   4) участие в обмене углеводов;
   5) синтез молекул, образующих гликокаликс цитолеммы;
   6) синтез, накопление, выведение муцинов (слизи);
   7) модификация мембран, синтезированных в ЭПС и превращение их в мембраны плазмолеммы.
   Лизосомы
   Лизосомы – наиболее мелкие органеллы цитоплазмы, представляют собой тельца, ограниченные билипидной мембраной и содержащие электронноплотный матрикс, состоящий из набора гидролитических белков-ферментов (более тридцати видов гидролаз), способных расщеплять любые полимерные соединения (белки, жиры, углеводы), их комплексы на мономерные фрагменты.
   Функция лизосом – обеспечение внутриклеточного пищеварения, т. е. расщепление как экзогенных, так и эндогенных биополимерных веществ.
   Классификация лизосом:
   1) первичные лизосомы – электронно-плотные тельца;
   2) вторичные лизосомы – фаголизосомы, в том числе аутофаголизосомы;
   3) третичные лизосомы или остаточные тельца.
   Истинными лизосомами называют мелкие электронноплотные тельца, образующиеся в пластинчатом комплексе. Пищеварительная функция лизосом начинается только после слияния с фагосомой (фагоцитируемое вещество, окруженное билипидной мембраной) и образования фаголизосомы, в которой смешиваются фагоцитируемый материал и лизосомальные ферменты. После этого начинается расщепление биополимерных соединений фагоцитированного материала на мономеры – аминокислоты, сахара. Эти молекулы свободно проникают через мембрану фаголизосомы в гиалоплазму и затем утилизируются клеткой – идут на образование энергии или построение новых внутриклеточных макромолекулярных соединений.
   Некоторые соединения не могут быть расщеплены ферментами лизосомы и поэтому выводятся из клетки в неизмененном виде при помощи экзоцитоза (процесс обратный фагоцитозу). Вещества липидной природы практически не расщепляются ферментами, а накапливаются и уплотняются в фаголизосоме. Данные образования были названы третичными лизосомами (или остаточными тельцами).
   В процессе фагоцитоза и экзоцитоза осуществляется рециркуляция мембран в клетке: при фагоцитозе часть плазмолеммы отшнуровывается и образует оболочку фагосомы, при экзоцитозе эта оболочка вновь встраивается в плазмолемму.
   Поврежденные, измененные или устаревшие собственные органеллы клетки утилизируются ею по механизму внутриклеточного фагоцитоза с помощью лизосом. Вначале эти органеллы окружаются билипидной мембраной, и образуется вакуоль – аутофагосома. Затем с ней сливается одна или несколько лизосом, и образуется аутофаголизосома, в которой осуществляеся гидролитическое расщепление биополимерных веществ, как и в фаголизосоме.
   Лизосомы содержатся во всех клетках, однако в неравном количестве. Специализированные клетки – макрофаги – содержат в цитоплазме большое количество первичных и вторичных лизосом. Они выполняют защитную функцию в тканях, поглощают значительное число экзогенных веществ – бактерий, вирусов, других чужеродных агентов и продуктов распада собственных тканей.
   Пероксисомы
   Пероксисомы – микротельца цитоплазмы (0,1 – 1,5 мкм), сходные по строению с лизосомами, однако отличаются от них тем, что в их матриксе содержатся кристаллоподобные структуры, а среди белков-ферментов содержится каталаза, разрушающая перекись водорода, образующуюся при окислении аминокислот.
   Рибосомы
   Рибосомы – аппараты синтеза белка и полипептидных молекул.
   По локализации подразделяются на:
   1) свободные, (находятся в гиалоплазме);
   2) несвободные (или прикрепленные), – которые связаны с мембранами ЭПС.
   Каждая рибосома состоит из малой и большой субъединиц. Каждая субъединица рибосомы состоит из рибосомальной РНК и белка – рибонуклеопротеида. Образуются субъединицы в ядрышке, а сборка в единую рибосому осуществляется в цитоплазме. Для синтеза белка отдельные рибосомы с помощью матричной (информационной) РНК объединяются в цепочки рибосом – полисомы. Свободные и прикрепленные рибосомы, помимо отличия в их локализация, характеризуются определенной функциональной специфичностью: свободные рибосомы синтезируют белки.
   Клеточный центр
   Клеточный центр – цитоцентр, центросома. В неделящейся клетке клеточный центр состоит из двух основных структурных компонентов:
   1) диплосомы;
   2) центросферы.
   Диплосома состоит из двух центриолей (материнской и дочерней), расположенных под прямым углом друг к другу. Каждая центриоль состоит из микротрубочек, образующих полый цилиндр, диаметром 0,2 мкм, длиной 0,3 – 0,5 мкм. Микротрубочки объединяются в триплеты (по три трубочки), образуя всего девять триплетов. Центросфера – бесструктурный участок гиалоплазмы вокруг диплосомы, от которого радиарно отходят микротрубочки (по типу лучистой сферы).
   Функции цитоцентра:
   1) образование веретена деления в профазе митоза;
   2) участие в формировании микротрубочек клеточного каркаса;
   3) выполнение роли базисных телец ресничек в реснитчатых эпителиальных клетках центриоли.
   Положение центриолей в некоторых эпителиальных клетках определяет их полярную дифференцированность.
   Микротрубочки
   Микротрубочки – полые цилиндры (внешний диаметр – 24 мм, внутренний – 15 им), являются самостоятельными органеллами, образуя цитоскелет. Они также могут входить в состав других органелл – центриолей, ресничек, жгутиков. Стенка микротрубочек состоит из глобулярного белка тубулина, который образован отдельными округлыми образованиями глобулы диаметром 5 нм. Глобулы могут находиться в гиалоплазме в свободном состоянии или соединяться между собой, в результате чего формируются микротрубочки. Они могут затем вновь распадаться на глобулы. Таким образом формируются и затем распадаются микротрубочки веретена деления в разные фазы митоза. Однако в составе центриолей, ресничек и жгутиков микротрубочки являются устойчивыми образованиями. Большая часть микротрубочек участвует в формировании внутриклеточного каркаса, который поддерживает форму клетки, обусловливая определенное положение органелл в цитоплазме, а также предопределяет направление внутриклеточных перемещений. Белки-тубулины не обладают способностью к сокращению, следовательно, и микротрубочки не сокращаются. В составе ресничек и жгутиков происходит взаимодействие микротрубочек между собой, их скольжение друг относительно друга, что обеспечивает движение этих органелл.
   Микрофибриллы
   Микрофибриллы (промежуточные филаменты) представляют собой тонкие неветвящиеся нити.
   В основном микрофибриллы локализуются в кортикальном, (подмембранном) слое цитоплазмы. Они состоят из белка, который в различных по классу клетках имеет определенную структуру (в эпителиальных клетках – это белок кератин, в мышечных клетках – десмин).
   Функциональная роль микрофибрилл – участвовать наряду с микротрубочками в формировании клеточного каркаса, выполняя опорную функцию.
   Микротрубочки могут объединяться в пучки и образовывать тонофибриллы, которые рассматриваются как самостоятельные органеллы и выполняют опорную функцию.
   Микрофиламенты
   Микрофиламенты – еще более тонкие нитчатые структуры (5 – 7 нм), состоящие из сократительных белков (актина, миозина, тропомиозина).
   Микрофиламенты локализуются в основном в кортикальном слое цитоплазмы.
   В совокупности микрофиламенты составляют сократительный аппарат клетки, обеспечивающий различные виды движений: перемещение органелл, ток гиалоплазмы, изменение клеточной поверхности, образование псевдоподии и перемещение клетки.
   Скопление микрофиламентов в мышечных волокнах образует специальные органеллы мышечной ткани – миофибриллы.
   Включения
   Включения – непостоянные структурные компоненты цитоплазмы. Классификация включений:
   1) трофические;
   2) секреторные;
   3) экскреторные;
   4) пигментные.
   В процессе жизнедеятельности клеток могут накапливаться случайные включения – медикаментозные, частички различных веществ.
   Трофические включения – лецитин в яйцеклетках, гликоген или липиды в различных клетках.
   Секреторные включения – это секреторные гранулы в секретирующих клетках (например, зимогенные гранулы в ацинозных клетках поджелудочной железы, секреторные гранулы в различных эндокринных клетках).
   Экскреторные включения – это вещества, которые необходимо удалить из клетки (например, гранулы мочевой кислоты в эпителии почечных канальцев).
   Пигментные включения – меланин, гемоглобин, липофусцин, билирубин. Эти включения придают клетке, которая их содержит, определенную окраску: меланин окрашивает клетку в черный или коричневый цвет, гемоглобин – в желто-красный, билирубин – в желтый. Пигментные клетки содержатся только в определенных типах клеток: меланин – в меланоцитах, гемоглобин – в эритроцитах. Липофусцин, в отличие от других указанных пигментов, может содержаться во многих типах клеток. Наличие липофусцина в клетках (особенно в значительном количестве) говорит о старении и функциональной неполноценности.

Тема 5. МОРФОЛОГИЯ И ФУНКЦИИ ЯДРА. РЕПРОДУКЦИЯ КЛЕТОК

   В организме человека содержатся только эукариотические (ядерные) типы клеток. Безъядерные структуры (эритроциты, тромбоциты, роговые чешуйки) являются вторичными образованиями, так как они образуются из ядерных клеток в результате их специфической дифференцировки.
   Большинство клеток содержит одно ядро, лишь редко встречаются двухядерные и многоядерные клетки. Форма ядра чаще всего округлая (сферическая) или овальная. В зернистых лейкоцитах ядро подразделяется на сегменты. Локализуется ядро обычно в центре клетки, но в клетках эпителиальной ткани может быть сдвинуто к базальному полюсу.
   Структурные элементы ядра четко выражены только в определенный период клеточного цикла – в интерфазу. В период деления клетки (митоза или мейоза) происходят выраженные изменения структур клеток: одни исчезают, другие значительно преобразуются.
   Структурные элементы ядра
   Структурные элементы ядра, перечисленные ниже, бывают хорошо выражены только в интерфазе:
   1) хроматин;
   2) ядрышко;
   3) кариоплазма;
   4) кариолемма.
   Хроматин представляет собой вещество, хорошо воспринимающее краситель (хромос), откуда и произошло его название. Хроматин состоит из хроматиновых фибрилл толщиной 20 – 25 км, которые могут располагаться в ядре рыхло или компактно.
   На этом основании можно выделить эухроматин – рыхлый (или деконденсированный) хроматин, слабо окрашиваемый основными красителями, и гетерохроматин – компактный (или конденсированный) хроматин, хорошо окрашиваемый основными красителями.
   При подготовке клетки к делению в ядре происходит спирализация хроматиновых фибрилл и превращение хроматина в хромосомы. После деления в ядрах дочерних клеток происходит деспирализация хроматиновых фибрилл, и хромосомы снова преобразуются в хроматин. Таким образом, хроматин и хромосомы являются различными состояниями одного и того же вещества.
   По химическому строению хроматин состоит из:
   1) дезоксирибонуклеиновой кислоты (ДНК) – 40%;
   2) белков – около 60%;
   3) рибонуклеиновой кислоты (РНК) – 1%.
   Ядерные белки представлены двумя формами:
   1) щелочными (гистоновыми) белками – 80 – 85%;
   2) кислыми белками – 15 – 20%.
   Гистоновые белки связаны с ДНК и образуют дезоксинуклеопротеид, представляющий собой хроматиновые фибриллы, отчетливо видимые при электронной микроскопии. На определенных участках хроматиновых фибрилл осуществляется транскрипция с ДНК на различные РНК, с помощью чего в последующем происходит синтез белковых молекул. Процессы траскрипции в ядре осуществляются только на свободных хромосомных фибриллах, т. е. на эухроматине. В конденсированном хроматине эти процессы не осуществляются, поэтому гетерохроматин называют неактивным хроматином.
   Соотношение эухроматина и гетерохроматина является показателем синтетической активности клетки. На хроматиновых фибриллах в S-периоде интерфазы осуществляется редупликация ДНК. Эти процессы могут протекать также и в гетерохроматине, но значительно дольше.
   Ядрышко – сферическое образование (1 – 5 мкм в диаметре), хорошо воспринимающее основные красители и располагающееся среди хроматина. В одном ядре может содержаться от 1 до 4 и даже более ядрышек. В молодых и часто делящихся клетках размер ядрышек и их количество увеличены. Ядрышко не является самостоятельной структурой. Оно формируется только в интерфазе, в определенных участках некоторых хромосом – ядрышковых организаторах, в которых содержатся гены, кодирующие молекулу рибосомальной РНК. В области ядрышкового анализатора осуществляется транскрипция с ДНК. В ядрышке происходит соединение рибосомальной РНК с белком и образование субъединицы рибосомы.
   Микроскопически в ядрышке различают:
   1) фибриллярный компонент (локализуется в центральной части ядрышка и представляет собой нити рибонуклеопротеида (РНП));
   2) гранулярный компонент (локализуется в периферической части ядрышка и представляет собой скопление субъединиц рибосом).
   В профазе митоза, когда происходит спирализация хроматиновых фибрилл и образование хромосом, процессы транскрипции РНК и синтеза субъединицы рибосом прекращаются, ядрышко исчезает. По окончании митоза в ядрах вновь образованных клеток происходит деконденсация хромосом, появляется ядрышко.
   Кариоплазма (нуклеоплазма или ядерный сок), состоит из воды, белков и белковых комплексов (нуклеопротеидов, гликопротеидов), аминокислот, нуклеотидов, сахаров. Под световым микроскопом кариоплазма бесструктурна, однако при электронной микроскопии в ней можно обнаружить мелкие гранулы (15 нм), состоящие из рибонуклеопротеидов. Белки кариоплазмы являются в основном белками-ферментами, в том числе ферментами гликолиза, осуществляющими расщепление углеводов с образованием АТФ.
   Негистоновые белки (кислые) образуют в ядре структурную сеть (ядерный белковый матрикс), которая вместе с ядерной оболочкой принимает участие в создании внутренней среды.
   При участии кариоплазмы осуществляется обмен веществ в ядре, взаимодействие ядра и цитоплазмы.
   Кариолемма – ядерная оболочка, которая отделяет содержимое ядра от цитоплазмы (барьерная функция), в то же время обеспечивает регулируемый обмен веществ между ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина.
   Кариолемма состоит из двух билипидных мембран, внешней и внутренней ядерных мембран, разделенных перинуклеарным пространством шириной 20 – 100 нм. В кариолемме имеются поры диаметром 80 – 90 нм. В области пор внешняя и внутренняя ядерные мембраны переходят друг в друга, а перинуклеарное пространство оказывается замкнутым. Просвет поры закрывается специальным структурным образованием – комплексом поры, который состоит из фибриллярного и гранулярного компонентов. Гранулярный компонент представлен белковыми гранулами диаметром 25 нм, располагающимися по краю поры в 3 ряда. От каждой гранулы отходят фибриллы и соединяются в центральной грануле, располагающейся в центре поры. Комплекс поры играет роль диафрагмы, регулирующей ее проницаемость. Размеры поры стабильные для данного типа клетки, но число пор может меняться при ее дифференцировке. В ядрах сперматозоидов поры отсутствуют. На наружной поверхности ядерной мембраны могут локализоваться прикрепленные рибосомы. Кроме того, наружная ядерная мембрана может продолжаться в каналы ЭПС.
   Функции ядер соматических клеток:
   1) хранение генетической информации, закодированной в молекулах ДНК;
   2) репарация (восстановление) молекул ДНК после их повреждения с помощью специальных репаративных ферментов;
   3) редупликация (удвоение) ДНК в синтетическом периоде интерфазы;
   4) передача генетической информации дочерним клеткам во время митоза;
   5) реализация генетической информации, закодированной в ДНК, для синтеза белка и небелковых молекул: образование аппарата белкового синтеза (информационной, рибосомальной и транспортных РНК).
   Функции ядер половых клеток:
   1) хранение генетической информации;
   2) передача генетической информации при слиянии женских и мужских половых клеток.
   Клеточный (жизненный) цикл
   Клеточный (или жизненный) цикл клетки – время существования клетки от деления до следующего деления или от деления до смерти. Для разных типов клеток клеточный цикл различен.
   В организме млекопитающих и человека различают следующие типы клеток, локализующиеся в разных тканях и органах:
   1) часто делящиеся клетки (малодифференцированные клетки эпителия кишечника, базальные клетки);
   2) редко делящиеся клетки (клетки печени – гепатоциты);
   3) неделящиеся клетки (нервные клетки центральной нервной системы, меланоциты и др.).
   Жизненный цикл у этих клеточных типов различен.
   Жизненный цикл у часто делящихся клеток – время их существования от начала деления до следующего деления. Жизненный цикл таких клеток нередко называют митотическим циклом.
   Такой клеточный цикл подразделяется на два основных периода:
   1) митоз (или период деления);
   2) интерфазу (промежуток жизни клетки между двумя делениями).
   Выделяют два основных способа размножения (репродукции) клеток.
   1. Митоз (кариокенез) – непрямое деление клеток, присущее в основном соматическим клеткам.
   2. Мейоз (редукционное деление) характерен только для половых клеток.
   Имеются описания и третьего способа деления клеток – амитоза (или прямого деления), которое осуществляется путем перетяжки ядра и цитоплазмы с образованием двух дочерних клеток или одной двухядерной. Однако в настоящее время считают, что амитоз характерен для старых и дегенерирующих клеток и является отражением патологии клетки.
   Указанные два способа деления клеток подразделяются на фазы или периоды.
   Митоз подразделяется на четыре фазы:
   1) профазу;
   2) метафазу;
   3) анафазу;
   4) телофазу.
   Профаза характеризуется морфологическими изменениями ядра и цитоплазмы.
   В ядре происходят следующие преобразования:
   1) конденсация хроматина и образование хромосом, состоящих из двух хроматид;
   2) исчезновение ядрышка;
   3) распад кариолеммы на отдельные пузырьки.
   В цитоплазме происходят следующие изменения:
   1) редупликация (удвоение) центриолей и расхождение их к противоположным полюсам клетки;
   2) формирование из микротрубочек веретена деления;
   3) редукция зернистой ЭПС и также уменьшение числа свободных и прикрепленных рибосом.
   В метафазе происходит следующее:
   1) образование метафазной пластинки (или материнской звезды);
   2) неполное обособление сестринских хроматид друг от друга.
   Для анафазы характерно:
   1) полное расхождение хроматид и образование двух равноценных дипольных наборов хромосом;
   2) расхождение хромосомных наборов к полюсам митотического веретена и расхождение самих полюсов.
   Для телофазы характерны:
   1) деконденсация хромосом каждого хромосомного набора;
   2) формирование из пузырьков ядерной оболочки;
   3) цитотомия, (перетяжка двухядерной клетки на две дочерние самостоятельные клетки);
   4) появление ядрышек в дочерних клетках.
   Интерфазу подразделяют на три периода:
   1) I – J1 (или пресинтетический период);
   2) II – S (или синтетический);
   3) III – J2 (или постсинтетический период).
   В пресинтетическом периоде в клетке происходят следующие процессы:
   1) усиленное формирование синтетического аппарата клетки – увеличение числа рибосом и различных видов РНК (транспортной, информационной, рибосомальной);
   2) усиление синтеза белка, необходимого для роста клетки;
   3) подготовка клетки к синтетическому периоду – синтез ферментов, необходимых для образования новых молекул ДНК.
   Для синтетического периода характерно удвоение (редупликация) ДНК, что приводит к удвоению плоидности диплоидных ядер и является обязательным условием для последующего митотического деления клетки.
   Постсинтетический период характеризуется усиленным синтезом информационной РНК и всех клеточных белков, особенно тубулинов, необходимых для формирования веретена деления.
   Клетки некоторых тканей (например, гепатоциты) по выходе из митоза вступают в так называемый J0-период, во время которого они выполняют свои многочисленные функции в течение ряда лет, при этом не вступая в синтетический период. Только при определенных обстоятельствах (при повреждении или удалении части печени) они вступают в нормальный клеточный цикл (или в синтетический период), синтезируя ДНК, а затем митотически делятся. Жизненный цикл таких редко делящихся клеток можно представить следующим образом:
   1) митоз;
   2) J1-период;
   3) J0-период;
   4) S-период;
   5) J2-период.
   Большинство клеток нервной ткани, особенно нейроны центральной нервной системы, по выходе из митоза еще в эмбриональном периоде в дальнейшем не делятся.
   Жизненный цикл таких клеток состоит из следующих периодов:
   1) митоза – I период;
   2) роста – II период;
   3) длительного функционирования – III период;
   4) старения – IV период;
   5) смерти – V период.
   На протяжении длительного жизненного цикла такие клетки постоянно регенерируют по внутриклеточному типу: белковые и липидные молекулы, входящие в состав разнообразных клеточных структур, постепенно заменяются новыми, т. е. клетки постепенно обновляются. На протяжении жизненного цикла в цитоплазме неделящихся клеток накапливаются различные, прежде всего липидные включения, в частности липофусцин, рассматриваемый в настоящее время как пигмент старения.
   Мейоз – способ деления клеток, при котором происходит уменьшение числа хромосом в дочерних клетках в 2 раза, характерен для половых клеток. В данном способе деления отсутствует редупликация ДНК.
   Кроме митоза и мейоза, выделяется также эндорепродукция, не приводящая к увеличению количества клеток, но способствующая увеличению количества работающих структур и усилению функциональной способности клетки.
   Для данного способа характерно, что после митоза клетки сначала вступают в J1-, а затем в S-период. Однако такие клетки после удвоения ДНК не вступают в J2-период, а затем в митоз. В результате этого количество ДНК становится увеличенным вдвое – клетка превращается в полиплоидную. Полиплоидные клетки могут вновь вступать в S-период, в результате чего они увеличивают свою плоидность.
   В полиплоидных клетках увеличивается размер ядра и цитоплазмы, клетки становятся гипетрофированными. Некоторые полиплоидные клетки после редупликации ДНК вступают в митоз, однако он не заканчивается цитотомией, так как такие клетки становятся двухъядерными.
   Таким образом, при эндорепродукции не происходит увеличения числа клеток, но увеличивается количество ДНК и органелл, следовательно, и функциональная способность полиплоидной клетки.
   Способностью к эндорепродукции обладают не все клетки. Наиболее характерна эндорепродукция для печеночных клеток, особенно с увеличением возраста (например, в старости 80% гепатоцитов человека являются полиплоидными), а также для ацинозных клеток поджелудочной железы и эпителия мочевого пузыря.
   Реакция клеток на внешнее воздействие
   Данная морфология клеток не является стабильной и постоянной. При воздействии на организм различных неблагоприятных факторов внешней среды в строении клетки происходят различные изменения. В зависимости от факторов воздействия изменение клеточных структур происходит неодинаково в клетках разных органов и тканей. При этом изменения клеточных структур могут быть приспособительными и обратимыми или дезадаптивными, необратимыми (патологическими). Определить границу между обратимыми и необратимыми изменениями не всегда возможно, так как адаптивные могут перейти в дезадаптивные при дальнейшем действии фактора внешней среды.
   Изменения в ядре при действии факторов внешней среды:
   1) набухание ядра и смещение его на периферию клетки;
   2) расширение перинуклеарного пространства;
   3) образование инвагинаций кариолеммы (впячивание внутрь ядра отдельных участков его оболочки);
   4) конденсация хроматина;
   5) пикноз (сморщивание ядра и уплотнение (коагуляция хроматина));
   6) кариорексис (распад ядра на фрагменты);
   7) кариолизис (растворение ядра).
   Изменения в цитоплазме:
   1) уплотнение, а затем набухание митохондрий;
   2) дегрануляция зернистой ЭПС (слущивание рибосом и фрагментация канальцев на отдельные вакуоли);
   3) расширение цистерн и распад на вакуоли пластинчатого комплекса Гольджи;
   4) набухание лизосом и активация их гидролаз;
   5) увеличение числа аутофагосом;
   6) распад веретена деления и развитие патологического митоза в процессе митоза.
   Изменения цитоплазмы могут быть обусловлены:
   1) структурными изменениями плазмолеммы, что приводит к усилению ее проницаемости и гидратации гиалоплазмы;
   2) нарушением обмена веществ, что приводит к снижению содержания АТФ;
   3) снижением расщепления или увеличением синтеза включений (гликогена, липидов) и их избыточном накоплением.
   После устранения неблагоприятных факторов внешней среды адаптивные изменения структур исчезают и морфология клетки полностью восстанавливается. При развитии неадаптивных изменений даже после устранения действия неблагоприятных факторов внешней среды изменения продолжают нарастать, и клетка погибает.

Тема 6. ОБЩАЯ ЭМБРИОЛОГИЯ

   Определение и составные части эмбриологии
   Эмбриология – наука о закономерностях развития животных организмов от момента оплодотворения до рождения (или вылупливания на яйца). Следовательно, эмбриология изучает внутриутробный период развития организма, т. е. часть онтогенеза.
   Онтогенез – развитие организма от оплодотворения до смерти, подразделяется на два периода:
   1) эмбриональный (эмбриогенез);
   2) постэмбриональный (постнатальный).
   Развитию любого организма предшествует прогенез.
   Прогенез включает в себя:
   1) гаметогенез – образование половых клеток (сперматогенез и овогенез);
   2) оплодотворение.
   Классификация яйцеклеток
   В цитоплазме большинства яйцеклеток содержатся включения – лецитин и желток, содержание и распределение которых значительно отличаются у различных живых организмов.
   По содержанию лецитина можно выделить:
   1) алецитарные яйцеклетки (безжелтковые). К этой группе относятся яйцеклетки гельминтов;
   2) олиголецитарные (маложелтковые). Характерно для яйцеклетки ланцетника;
   3) полилецитарные (многожелтковые). Свойственно яйцеклеткам некоторых птиц и рыб.
   По распределению лецитина в цитоплазме выделяют:
   1) изолецитарные яйцеклетки. Лецитин распределяется в цитоплазме равномерно, что характерно для олиголецитарных яйцеклеток;
   2) телолецитарные. Желток концентрируется на одном из полюсов яйцеклетки. Среди телолецитарных яйцеклеток выделяют умеренно телолецитарные (характерны для амфибий), резко телолецитарные (бывают у рыбы и птицы) и центролецитарные (у них желток локализуется в центре, что характерно для насекомых).
   Предпосылкой онтогенеза является взаимодействие мужских и женских половых клеток, при этом происходит оплодотворение – процесс слияния женской и мужской половых клеток (сингамия), в результате которого образуется зигота.
   Оплодотворение может быть внешним (у рыб и амфибий), при этом мужские и женские половые клетки выходят во внешнюю среду, где и происходит их слияние, и внутренним – (у птиц и млекопитающих), при этом сперматозоиды поступают в половые пути женского организма, в котором и происходит оплодотворение.
   Внутреннее оплодотворение, в отличие от внешнего, представляет собой сложный многофазный процесс. После оплодотворения образуется зигота, развитие которой продолжается при внешнем оплодотворении в воде, у птиц – в яйце, а у млекопитающих и человека – в материнском организме (матке).
   Периоды эмбриогенеза
   Эмбриогенез по характеру процессов, происходящих в зародыше, подразделяется на три периода:
   1) период дробления;
   2) период гаструляции;
   3) период гистогенеза (образования тканей), органогенеза (образования органов), системогенеза (образования функциональных систем организма).
   Дробление. Продолжительность жизни нового организма в виде одной клетки (зиготы) продолжается у разных животных от нескольких минут до нескольких часов и даже дней, а затем начинается дробление. Дробление – процесс митотического деления зиготы на дочерние клетки (бластомеры). Дробление отличается от обычного митотического деления следующими особенностями:
   1) бластомеры не достигают исходных размеров зиготы;
   2) бластомеры не расходятся, хотя и представляют собой самостоятельные клетки.
   Различают следующие типы дробления:
   1) полное, неполное;
   2) равномерное, неравномерное;
   3) синхронное, асинхронное.
   Яйцеклетки и образующиеся после их оплодотворения зиготы, содержащие небольшое количество лецитина (олиголецитальные), равномерно распространенного в цитоплазме (изолецитальные), делятся полностью на две дочерние клетки (бластомеры) равной величины, которые затем одновременно (синхронно) делятся снова на бластомеры. Такой тип дробления является полным, равномерным и синхронным.
   Яйцеклетки и зиготы, содержащие умеренное количество желтка, также дробятся полностью, но образующиеся бластомеры имеют разную величину и дробятся неодновременно – дробление полное, неравномерное, асинхронное.
   В результате дробления образуется вначале скопление бластомеров, и зародыш в таком виде носит название морулы. Затем между бластомерами накапливается жидкость, которая отодвигает бластомеры на периферию, а в центре образуется полость, заполненная жидкостью. В этой стадии развития зародыш носит название бластулы.
   Бластула состоит из:
   1) бластодермы – оболочки из бластомеров;
   2) бластоцели – полости, заполненной жидкостью.
   Бластула человека – бластоциста. После образования бластулы начинается второй этап эмбриогенеза – гаструляция.
   Гаструляция – процесс образования зародышевых листков, образующихся посредством размножения и перемещения клеток. Процесс гаструляции у разных животных протекает неодинаково. Различают следующие способы гаструляции:
   1) деламинацию (расщепление скопления бластомеров на пластинки);
   2) иммиграцию (перемещение клеток внутрь развивающегося зародыша);
   3) инвагинацию (впячивание пласта клеток внутрь зародыша);
   4) эпиболию (обрастание медленно делящихся бластомеров быстро делящимися с образованием наружного пласта клеток).
   В результате гаструляции в зародыше любого вида животного образуются три зародышевых листка:
   1) эктодерма (наружный зародышевый листок);
   2) энтодерма (внутренний зародышевый листок);
   3) мезодерма (средний зародышевый листок).
   Каждый зародышевый листок представляет собой обособленный пласт клеток. Между листками вначале имеются щелевидные пространства, в которые вскоре мигрируют отростчатые клетки, образующие в совокупности зародышевую мезенхиму (некоторые авторы рассматривают ее как четвертый зародышевый листок).
   Зародышевая мезенхима образуется путем выселения клеток из всех трех зародышевых листков, главным образом из мезодермы. Зародыш, состоящий из трех зародышевых листков и мезенхимы, носит название гаструлы. Процесс гаструляции у зародышей разных животных существенно отличается как по способам, так и по времени. В образующихся после гаструляции зародышевых листках и мезенхиме содержатся презумптивные (предположительные) зачатки тканей. После этого начинается третий этап эмбриогенеза – гисто– и органогенез.
   Гисто– и органогенез (или дифференцировка зародышевых листков) представляет собой процесс превращения зачатков тканей в ткани и органы, а затем и формирование функциональных систем организма.
   В основе гисто– и органогенеза лежат следующие процессы: митотическое деление (пролиферация), индукция, детерминация, рост, миграция и дифференцировка клеток. В результате этих процессов вначале образуются осевые зачатки комплексов органов (хорда, нервная трубка, кишечная трубка, мезодермальные комплексы). Одновременно постепенно формируются различные ткани, а из сочетания тканей закладываются и развиваются анатомические органы, объединяющиеся в функциональные системы – пищеварительную, дыхательную, половую и др. На начальном этапе гисто– и органогенеза зародыш носит название эмбриона, который в дальнейшем превращается в плод.
   В настоящее время окончательно не установлено, каким образом из одной клетки (зиготы), а в дальнейшем из одинаковых зародышевых листков образуются совершенно различные по морфологии и функции клетки, а из них – ткани (из эктодермы образуются эпителиальные ткани, роговые чешуйки, нервные клетки и клетки глии). Предположительно в данных превращениях играют ведущую роль генетические механизмы.
   Понятие о генетических основах гисто– и органогенеза
   После оплодотворения яйцеклетки сперматозоидом образуются зигота. Она содержит генетический материал, состоящий из материнских и отцовских генов, которые затем передаются при делении дочерним клеткам. Сумма всех генов зиготы и образующихся из нее клеток составляет геном, характерный только для данного вида организма, а особенности сочетания материнских и отцовских генов у данной особи составляют ее генотип. Следовательно, любая клетка, образующаяся из зиготы, содержит одинаковый по количеству и качеству генетический материал, т. е. одинаковые геном и генотип (исключением являются только половые клетки, они содержат половинный набор генома).
   В процессе гаструляции и после образования зародышевых листков клетки, расположенные в разных листках или в различных участках одного зародышевого листка, оказывают влияние друг на друга. Такое влияние называют индукцией. Индукция осуществляется путем выделения химических веществ (белков), но существуют и физические методы индукции. Индукция оказывает влияние прежде всего на геном клетки. В результате индукции некоторые гены клеточного генома блокируются, т. е. становятся нерабочими, с них не производится транскрипция различных молекул РНК, следовательно, не осуществляется и синтез белка. В результате индукции одни гены оказываются блокированными, другие свободными – рабочими. Сумма свободных генов данной клетки называется ее эпигеном. Сам процесс формирования эпигенома, т. е. взаимодействия индукции и генома, носит название детерминации. После сформирования эпигенома клетка становится детерминированной, т. е. запрограммированной к развитию в определенном направлении.
   Сумма клеток, расположенных в определенном участке зародышевого листка и имеющих одинаковый эпигеном, представляет собой презумптивные зачатки определенной ткани, так как все эти клетки будут дифференцироваться в одном направлении и войдут в состав этой ткани.
   Процесс детерминации клеток в разных участках зародышевых листков осуществляется в разное время и может протекать в несколько стадий. Сформированный эпигеном является устойчивым и после митотического деления передается дочерним клеткам.
   После детерминации клеток, т. е. после окончательного формирования эпигенома, начинается дифференцировка – процесс морфологической, биохимической и функциональной специализации клеток.
   Этот процесс обеспечивается транскрипцией с активных генов, определенных РНК, а затем осуществляется синтез определенных белков и небелковых веществ, которые и определяют морфологическую, биохимическую и функциональную специализацию клеток. Некоторые клетки (например, фибробласты) формируют межклеточное вещество.
   Таким образом, формирование из клеток, содержащих одинаковый геном и генотип, разнообразных по строению и функциям клеток можно объяснить процессом индукции и формированием клеток с различным эпигеномом, которые затем дифференцируются в клетки различных популяций.
   Внезародышевые (провизорные) органы
   Часть бластомеров и клеток после дробления зиготы идет на образование органов, способствующих развитию зародыша и плода. Такие органы и называются внезародышевыми.
   После рождения некоторые внезародышевые органы отторгаются, другие на последних этапах эмбриогенеза подвергаются обратному развитию или перестраиваются. У разных животных развивается неодинаковое количество провизорных органов, отличающихся по строению и по выполняемым функциям.
   У млекопитающих, в том числе и у человека, развиваются четыре внезародышевых органа:
   1) хорион;
   2) амнион;
   3) желточный мешок;
   4) аллантоис.
   Хорион (или ворсинчатая оболочка) выполняет защитную и трофическую функции. Часть хориона (ворсинчатый хорион) внедряется в слизистую оболочку матки и входит в состав плаценты, которую иногда рассматривают как самостоятельный орган.
   Амнион (или водная оболочка) образуется только у наземных животных. Клетки амниона продуцируют амниотическую жидкость (околоплодные воды), в которой и развивается эмбрион, а затем – плод.
   После рождения ребенка хориальная и амниотическая оболочки отторгаются.
   Желточный мешок развивается в наибольшей степени у зародышей, образующихся из полилецитальных клеток, и потому содержит много желтка, откуда и происходит его название. Желточный меток выполняет следующие функции:
   1) трофическую (за счет трофического включения (желтка) обеспечивается питание зародыша, особенно развивающегося в яйце, на более поздних стадиях развития для доставки трофического материала к зародышу формируется желточный круг кровообращения);
   2) кроветворную (в стенке желточного мешка (в мезенхиме) образуются первые клетки крови, которые затем мигрируют в кроветворные органы зародыша);
   3) гонобластическую (в стенке желточного мешка (в энтодерме) образуются первичные половые клетки (гонобласты), которые затем мигрируют в закладки половых желез зародыша).
   Аллантоис – слепое выпячивание каудального конца кишечной трубки, окруженное внезародышевой мезенхимой. У животных, развивающихся в яйце, аллантоис достигает большого развития и выполняет функцию резервуара для продуктов обмена зародыша (главным образом мочевины). Именно поэтому аллантоис нередко называю мочевым мешком.
   У млекопитающих необходимость в накоплении продуктов обмена отсутствует, так как они поступают через маточно-плацентарный кровоток в организм матери и выводятся ее экскреторными органами. Поэтому у таких животных и человека аллантоис развит слабо и выполняет другие функции: в его стенке развиваются пупочные сосуды, которые разветвляются в плаценте и благодаря которым формируется плацентарный круг кровообращения.

Тема 7. ЭМБРИОЛОГИЯ ЧЕЛОВЕКА

   Прогенез
   Рассмотрение закономерностей эмбриогенеза начинается с прогенеза. Прогенез – гаметогенез (спермато– и овогенез) и оплодотворение.
   Сперматогенез осуществляется в извитых канальцах семенников и подразделяется на четыре периода:
   1) период размножения – I;
   2) период роста – II;
   3) период созревания – III;
   4) период формирования – IV.
   Процесс сперматогенеза будет обстоятельно рассмотрен при изучении мужской половой системы. Сперматозоид человека состоит из двух основных частей: головки и хвоста.
   Головка содержит:
   1) ядро (с гаплоидным набором хромосом);
   2) чехлик;
   3) акросому;
   4) тонкий слой цитоплазмы, окруженный цитолеммой.
   Хвост сперматозоида подразделяется на:
   1) связующий отдел;
   2) промежуточный отдел;
   3) главный отдел;
   4) терминальный отдел.
   Главные функции сперматозоида – хранение и передача яйцеклеткам генетической информации при их оплодотворении. Оплодотворяющая способность сперматозоидов в половых путях женщины сохраняется до 2 суток.
   Овогенез осуществляется в яичниках и подразделяется на три периода:
   1) период размножения (в эмбриогенезе и в течение 1-го года постэмбрионального развития);
   2) период роста (малого и большого);
   3) период созревания.
   Яйцеклетка состоит из ядра с гаплоидным набором хромосом и выраженной цитоплазмы, в которой содержатся все органеллы, за исключением цитоцентра.
   Оболочки яйцеклетки:
   1) первичная (плазмолемма);
   2) вторичная – блестящая оболочка;
   3) третичная – лучистый венец (слой фолликулярных клеток).
   Оплодотворение у человека внутреннее – в дистальной части маточной трубы.
   Подразделяется на три фазы:
   1) дистантное взаимодействие;
   2) контактное взаимодействие;
   3) проникновение и слияние пронуклеусов (фаза синкариона).
   В основе дистантного взаимодействия лежат три механизма:
   1) реотаксис – движение сперматозоидов против тока жидкости в матке и маточной трубе;
   2) хемотаксис – направленное движение сперматозоидов к яйцеклетке, которая выделяет специфические вещества – гиногамоны;
   3) канацитация – активация сперматозоидов гиногамонами и гормоном прогестероном.
   Через 1,5 – 2 ч сперматозоиды достигают дистальной части маточной трубы и вступают в контактное взаимодействие с яйцеклеткой.
   Основным моментом контактного взаимодействия является акросомальная реакция – выделение ферментов (трипсина и гиалуроновой кислоты) из акросом сперматозоидов. Эти ферменты обеспечивают:
   1) отделение фолликулярных клеток лучистого венца от яйцеклетки;
   2) постепенное, но неполное разрушение блестящей оболочки яйцеклетки.
   При достижении одним из сперматозоидов плазмолеммы яйцеклетки в этом месте образуется небольшое выпячивание – бугорок оплодотворения. После этого начинается фаза проникновения. В области бугорка плазмолеммы яйцеклетки и сперматозоида сливаются, и часть сперматозоида (головка, связующий и промежуточные отделы) оказывается в цитоплазме яйцеклетки. Плазмолемма сперматозоида встраивается в плазмолемму яйцеклетки. После этого начинается кортикальная реакция – выход кортикальных гранул из яйцеклетки по типу экзоцитоза, которые между плазмолеммой яйцеклетки и остатками блестящей оболочки сливаются, затвердевают и образуют оболочку оплодотворения, препятствующую проникновению в яйцеклетку других сперматозоидов. Таким образом у млекопитающих и человека обеспечивается моноспермия.
   Главным событием фазы проникновения является внедрение в цитоплазму яйцеклетки генетического материала сперматозоидов, а также цитоцентра. После этого происходит набухание мужского и женского пронуклеусов, их сближение, а затем и слияние – синакрион. Одновременно в цитоплазме начинаются перемещения содержимого цитоплазмы и обособление (сегрегация) отдельных ее участков. Так формируются предположительные (презумптивные) зачатки будущих тканей – проходит этап дифференцировки тканей.
   Условия, необходимые для оплодотворения яйцеклетки:
   1) содержание в эякуляте не менее 150 млн сперматозоидов, при концентрации в 1 мл не менее 60 млн;
   2) проходимость женских половых путей;
   3) нормальное анатомическое положение матки;
   4) нормальная температура тела;
   5) щелочная среда в половых путях женщины.
   С момента слияния пронуклеусов образуется зигота – новый одноклеточный организм. Время существования организма зиготы – 24 – 30 ч. С этого периода начинается онтогенез и его первый этап – эмбриогенез.
   Эмбриогенез
   Эмбриогенез человека подразделяется (в соответствии с происходящими в нем процессами) на:
   1) период дробления;
   2) период гаструляции;
   3) период гисто– и органогенеза.
   В акушерстве эмбриогенез подразделяется на другие периоды:
   1) начальный период – 1-я неделя;
   2) зародышевый период (или период эмбриона) – 2 – 8-я недели;
   3) плодный период – с 9-й недели и до конца эмбриогенеза.
   I. Период дробления. Дробление у человека полное, неравномерное, асинхронное. Бластомеры неравной величины и подразделяются на два типа: темные крупные и светлые мелкие. Крупные бластомеры дробятся реже, располагаются о центре и составляют эмбриобласт. Мелкие бластомеры чаще дробятся, располагаются по периферии от эмбриобласта и в дальнейшем формируют трофобласт.
   Первое дробление начинается примерно через 30 ч после оплодотворения. Плоскость первого деления проходит через область направительных телец. Поскольку желток в зиготе распределен равномерно, выделение анимального и вегетативных полюсов крайне затруднено. Область отделения направительных телец обычно называют анимальным полюсом. После первого дробления образуются два бластомера, несколько различных по величине.
   Второе дробление. Образование второго митотического веретена в каждом из образовавшихся бластомеров происходит вскоре после окончания первого деления, плоскость второго деления проходит перпендикулярно плоскости первого дробления. При этом концептус переходит в стадию 4 бластомеров. Однако дробление у человека асинхронное, поэтому в течение некоторого времени можно наблюдать 3-х клеточный концептус. На стадии 4 бластомеров синтезируются все основные виды РНК.
   Третье дробление. На этой стадии асинхронность дробления проявляется в большей мере, в итоге образуется концептус с различным количеством бластомеров, при этом условно его можно разделить на 8 бластомеров. До этого бластомеры расположены рыхло, но вскоре концептус уплотняется, поверхность соприкосновения бластомеров увеличивается, объем межклеточного пространства уменьшается. В результате этого наблюдаются сближение и компактизация – крайне важное условие для образования между бластомерами плотных и щелевидных контактов. Перед формированием в плазматическую мембрану бластомеров начинает встраиваться увоморулин – белок адгезии клеток. В бластомерах ранних концептусов увоморулин равномерно распределен в клеточной мембране. Позднее в области межклеточных контактов образуются скопления (кластеры) молекул увоморулина.
   На 3 – 4-е сутки образуется морула, состоящая из темных и светлых бластомеров, а с 4-х суток начинается накопление жидкости между бластомерами и формирование бластулы, которая называется бластоцистой.
   Развитая бластоциста состоит из следующих структурных образований:
   1) эмбриобласты;
   2) трофобласты;
   3) бластоцели, заполненной жидкостью.
   Дробление зиготы (формирование морулы и бластоцисты) осуществляется в процессе медленного перемещения зародыша по маточной трубе к телу матки.
   На 5-е сутки бластоциста попадает в полость матки и находится в ней в свободном состоянии, а с 7-х суток происходит имплантация бластоцисты в слизистую оболочку матки (эндометрий). Процесс этот подразделяется на две фазы:
   1) фазу адгезии – прилипания к эпителию;
   2) фазу инвазии – внедрения в эндометрий.
   Весь процесс имплантации происходит на 7 – 8-е сутки и продолжается в течение 40 ч.
   Внедрение зародыша осуществляется при помощи разрушения эпителия слизистой оболочки матки, а затем соединительной ткани и стенок сосудов эндометрия протеолитическими ферментами, которые выделяются трофобластом бластоцисты. В процессе имплантации происходит смена гистиотрофного типа питания зародыша на гемотрофный.
   На 8-е сутки зародыш оказывается полностью погруженным в собственную пластинку слизистой оболочки матки. Дефект эпителия области внедрения зародыша при этом зарастает, а зародыш оказывается окруженным со всех сторон лакунами (или полостями), заполненными материнской кровью, изливающейся из разрушенных сосудов эндометрия. В процессе имплантации зародыша происходят изменения как в трофобласте, так и в эмбриобласте, где происходит гаструляция.
   II. Гаструляция у человека подразделяется на две фазы. Первая фара гаструляции протекает на 7 – 8-е сутки (в процессе имплантации) и осуществляется способом деламинации (формируется эпибласт, гипобласт).
   Вторая фаза гаструляции происходит с 14-х на 17-е сутки. Ее механизм будет рассмотрен несколько позже.
   В период между I и II фазами гаструляции, т. е. с 9-х по 14-е сутки формируются внезародышевая мезенхима и три внезародышевых органа – хорион, амнион, желточный мешок.
   Развитие, строение и функции хориона. В процессе имплантации бластоцисты ее трофобласт по мере внедрения из однослойного становится двухслойным и состоит из цитотрофобласта и симпатотрофобласта. Симпатотрофобласт представляет собой структуру, в которой в единой цитоплазме содержится большое число ядер и клеточных органелл. Образуется он посредствам слияния клеток, выталкиваемых из цитотрофобласта. Таким образом, эмбриобласт, в котором происходит I фаза гаструляции, окружен внезародышевой оболочкой, состоящей из цито– и симпластотрофобласта.
   В процессе имплантации из эмбриобласта выселяются в полость бластоцисты клетки, образующие внезародышевую мезенхиму, которая подрастает изнутри к цитотрофобласту.
   После этого трофобласт становится трехслойным – состоит из симпластотрофобласта, цитотрофобласта и париентального листка внезародышевой мезенхимы и носит название хориона (или ворсинчатой оболочки). По всей поверхности хориона располагаются ворсины, которые вначале состоят из цито– и симпластотрофобласта и называются первичными. Затем в них врастает изнутри внезародышевая мезенхима, и они становятся вторичными. Однако постепенно на большей части хориона ворсинки редуцируются и сохраняются только в той части хориона, которая направлена к базальному слою эндометрия. При этом ворсинки разрастаются, в них врастают сосуды, и они становятся третич-ными.
   При развитии хориона выделяют два периода:
   1) формирование гладкого хориона;
   2) формирование ворсинчатого хориона.
   Из ворсинчатого хориона в последующем формируется плацента.
   Функции хориона:
   1) защитная;
   2) трофическая, газообменная, экскреторная и другие, в которых хорин принимает участие, будучи составной частью плаценты и которые выполняет плацента.
   Развитие, строение и функции амниона. Внезародышевая мезенхима, заполняя полость бластоцисты, оставляет свободными небольшие участки бластоцели, прилежащие к эпибласту и гипобласту. Эти участки составляют мезенхимальные закладки амниотического пузырька и желточного мешка.
   Стенка амниона состоит из:
   1) внезародышевой эктодермы;
   2) внезародышевой мезенхимы (висцерального листка).
   Функции амниона – образование околоплодных вод и защитная функция.
   Развитие, строение и функции желточного мешка. Из гипобласта выселяются клетки, составляющие внезародышевую (или желточную) энтодерму, и, обрастая изнутри мезенхимальную закладку желточного мешка, образуют вместе с ней стенку желточного мешка. Стенка желточного мешка состоит из:
   1) внезародышевой (желточной) энтодермы;
   2) внезародышевой мезенхимы.
   Функции желточного мешка:
   1) кроветворение (образование стволовых клеток крови);
   2) образование половых стволовых клеток (гонобластов);
   3) трофическая (у птиц и рыб).
   Развитие, строение и функции аллантоиса. Часть зародышевой энтодермы гипобласта в виде пальцевидного выпячивания врастает в мезенхиму амниотической ножки и формирует аллантоис. Стенка аллантоиса состоит из:
   1) зародышевой энтодермы;
   2) внезародышевой мезенхимы.
   Функциональная роль аллантоиса:
   1) у птиц полость аллантоиса достигает значительного развития и в ней накапливается мочевина, поэтому его называют мочевым мешком;
   2) у человека нет необходимости накопления мочевины, поэтому полость аллантоиса очень незначительная и к концу 2-го месяца полностью зарастает.
   Однако в мезенхиме аллантоиса развиваются кровеносные сосуды, которые проксимальными концами соединяются с сосудами тела зародыша (эти сосуды возникают в мезенхиме тела зародыша позже, чем в аллантоисе). Дистальными концами сосуды аллантоиса врастают во вторичные ворсинки ворсинчатой части хориона и превращают их в третичные. С 3-й по 8-ю недели внутриутробного развития за счет этих процессов формируется плацентарный круг кровообращения. Амниотическая ножка вместе с сосудами вытягивается и превращается в пупочный канатик, а сосуды (две артерии и вена) называются пупочными сосудами.
   Мезенхима пупочного канатика преобразуется в слизистую соединительную ткань. В составе пупочного канатика содержатся также остатки аллантоиса и желточного стебелька. Функция аллантоиса – способствование выполнению функций плаценты.
   По окончании второй стадии гаструляции зародыш носит название гаструлы и состоит из трех зародышевых листков – эктодермы, мезодермы и энтодермы и четырех внезародышевых органов – хориона, амниона, желточного мешка и аллантоиса.
   Одновременно с развитием второй фазы гаструляции формируется зародышевая мезенхима посредством миграции клеток из все трех зародышевых листков.
   На 2 – 3-й неделе, т. е. в процессе второй фазы гаструляции и сразу же после нее, происходит закладка зачатков осевых органов:
   1) хорды;
   2) нервной трубки;
   3) кишечной трубки.
   Строение и функции плаценты
   Плацента – это образование, которое осуществляет связь между плодом и организмом матери.
   Плацента состоит из материнской части (базальная часть децидуальной оболочки) и плодной части (ворсинчатый хорион – производное трофобласта и внезародышевой мезодермы).
   Функции плаценты:
   1) обмен между организмами матери и плода газами-метаболитами, электролитами. Обмен осуществляется при помощи пассивного транспорта, облегченной диффузии и активного транспорта. Достаточно свободно в организм плода из материнского могут проходить стероидные гормоны;
   2) транспорт материнских антител, осуществляющийся при помощи опосредованного рецепторами эндоцитоза и обеспечивающийся пассивный иммунитет плода. Данная функция очень важна, так как после рождения плод имеет пассивный иммунитет ко многим инфекциям (кори, краснухе, дифтерии, столбняку и др.), которыми либо болела мать, либо против которых была вакцинирована. Продолжительность пассивного иммунитета после рождения составляет 6 – 8 месяцев;
   3) эндокринная функция. Плацента – это эндокринный орган. Она синтезирует гормоны и биологически активные вещества, которые играют очень большую роль в нормальном физиологическом протекания беременности и развития плода. К этим веществам относятся прогестерон, хорионический соматомаммотропин, фактор роста фибробластов, трансферрин, пролактин и релаксин. Кортиколиберины определяют срок родов;
   4) детоксикация. Плацента способствует детоксикации некоторых лекарственных препаратов;
   5) плацентарный барьер. В состав плацентарного барьера входят синцитиотрофобласт, цитотрофобласт, базальная мембрана трофобласта, соединительная ткань ворсины, базальная мембрана в стенке капилляра плода, эндотелий капилляра плода. Гематоплацентарный барьер препятствует контакту крови матери и плода, что очень важно для защиты плода от влияния иммунной системы матери.
   Структурно-функциональной единицей сформировавшейся плаценты является котиледон. Он образован стволовой ворсиной и ее разветвлениями, содержащими сосуды плода. К 140-му дню беременности в плаценте сформировано около 10 – 12 больших, 40 – 50 мелких и до 150 рудиментарных котиледонов. К 4-му месяцу беременности формирование основных структур плаценты заканчивается. Лакуны полностью сформированной плаценты содержат около 150 мл материнской крови, полностью обменивающейся в течение 3 – 4 мин. Общая поверхность ворсин составляет около 15 м2, что обеспечивает нормальный уровень обмена веществ между организмами матери и плода.
   Строение и функции децидуальной оболочки
   Децидуальная оболочка образуется на всем протяжении эндометрия, но раньше всего она образуется в области имплантации. К конце 2-й недели внутриутробного развития эндометрий полностью замещается децидуальной оболочкой, в которой можно выделить базальную, капсулярную и пристеночные части.
   Децидуальная оболочка, окружающая хорион, содержит базальную и капсулярную части.
   Другие отделы децидуальной оболочки выстланы пристеночной частью. В децидуальной оболочке выделяют губчатую и компактные зоны.
   Базальная часть децидуальной оболочки входит в состав плаценты. Она отделяет плодное яйцо от миометрия. В губчатом слое много желез, сохраняющихся до 6-го месяца беременности.
   Капсулярная часть к 18-му дню беременности полностью смыкается над имплантированным плодным яйцом и отделяет его от полости матки. По мере роста плода капсулярная часть выпячивается в полость матки и к 16-й неделе внутриутробного развития срастается с пристеночной частью. При доношенной беременности капсулярная часть хорошо сохраняется и различима только в нижнем полюсе плодного яйца – над внутренним маточным зевом. Капсулярная часть не содержит поверхностного эпителия.
   Пристеночная часть до 15-й недели беременности утолщается за счет компактной и губчатой зон. В губчатой зоне пристеночной части децидуальной оболочки железы развиваются до 8-й недели беременности. К моменту слияния пристеночной и капсулярной частей количество желез постепенно уменьшается, они становятся неразличимыми.
   В конце доношенной беременности пристеночная часть децидуальной оболочки представлена несколькими слоями децидуальных клеток. С 12-й недели беременности поверхностный эпителий пристеночной части исчезает.
   Клетки рыхлой соединительной ткани вокруг сосудов компактной зоны резко увеличены. Это молодые децидуальные клетки, которые по своему строению сходны с фибробластами. По мере дифференцировки размеры децидуальных клеток увеличиваются, они приобретают округлую форму, их ядра становятся светлыми, клетки более тесно прилегают друг к другу. К 4 – 6-й неделе беременности преобладают крупные светлые децидуальные клетки. Часть децидуальных клеток имеет костномозговое происхождение: по-видимому, они участвуют в иммунном ответе.
   Функцией децидуальных клеток является продукция пролактина и простагландинов.
   III. Дифференцировка мезодермы. В каждой мезодермальной пластинке, происходит дифференцировка ее на три части:
   1) дорзсальную часть (сомиты);
   2) промежуточную часть (сегментные ножки, или нефротомы);
   3) вентральную часть (спланхиотому).
   Дорзсальная часть утолщается и подразделяется на отдельные участки (сегменты) – сомиты. В свою очередь, в каждом сомите выделяют три зоны:
   1) периферическую зону (дерматому);
   2) центральную зону (миотому);
   3) медиальную часть (склеротому).
   По сторонам зародыша образуются туловищные складки, которые отделяют зародыш от внезародышевых органов.
   Благодаря туловищным складкам кишечная энтодерма сворачивается в первичную кишку.
   Промежуточная часть каждого мезодермального крыла также сегментируется (за исключением каудального отдела – нефрогенной ткани) на сегментные ножки (или нефротомы, нефрогонотомы).
   Вентральная часть каждого мезодермального крыла не сегментируется. Она расщепляется на два листка, между которыми располагается полость – целом, и носит название «спланхиотома». Следовательно, спланхиотома состоит из:
   1) висцерального листка;
   2) париентального листка;
   3) полости – целома.
   IV. Дифференцировка эктодермы. Наружный зародышевый листок дифференцируется на четыре части:
   1) нейроэктодерму (из нее разминается нервная трубка и ганглиозная пластинка);
   2) кожная эктодерма (развивается эпидермис кожи);
   3) переходная пластика (развивается эпителий пищевода, трахеи, бронхов);
   4) плакоды (слуховая, хрусталиковая и др.).
   V. Дифференцировка энтодермы. Внутренний зародышевый листок подразделяется на:
   1) кишечную (или зародышевую), энтодерму;
   2) внезародышевую (или желточную), энтодерму.
   Из кишечной энтодермы развиваются:
   1) эпителий и железы желудка и кишечника;
   2) печень;
   3) поджелудочная железа.
   Органогенез
   Развитие подавляющего большинства органов начинается с 3 – 4-й недели, т. е. с конца 1-го месяца существования зародыша. Органы образуются в результате перемещения и сочетания клеток и их производных, нескольких тканей (например, печень состоит из эпителиальной и соединительной тканей). При этом клетки разных тканей оказывают индуктивное влияние друг на друга и тем самым обеспечивают направленный морфогенез.
   Критические периоды в развитии человека
   В процессе развития нового организма существуют такие периоды, когда весь организм или его отдельные клетки, органы и их системы являются наиболее чувствительными к экзогенным и эндогенным факторам среды. Такие периоды принято называть критическими, так как именно в это время в них могут произойти изменения, которые в дальнейшем приведут к нарушению нормального развития и к формированию аномалий – нарушений нормального анатомического строения органов без нарушения их функций, пороков – нарушений анатомического строения органов с нарушением их функций, уродств – выраженных анатомических нарушений структуры органов, с нарушением их функций, часто несовместимым с жизнью.
   Критическими периодами в развитии человека являются следующие:
   1) гаметогенез (спермато– и овогенез);
   2) оплодотворение;
   3) имплантация (7 – 8-е сутки);
   4) плацентация и закладка осевых комплексов (3 – 8-я неделя);
   5) стадия усиленного роста головного мозга (15 – 20-я неделя);
   6) формирование полового аппарата и других функциональных систем (20 – 24-я неделя);
   7) рождение ребенка;
   8) период новорожденности (до 1 года);
   9) период полового созревания (11 – 16 лет).
   В эмбриогенезе критические периоды для определенных групп клеток возникают тогда, когда происходит формирование эпигенома и осуществляется детерминация, предопределяющая дальнейшую дифференцировку клеток в определенном направлении и формирование органов и тканей. Именно в этот период различные химические и физические воздействия могут привести к нарушению формирования естественного эпигенома, т. е. к образованию нового, что детерминирует клетки к развитию в новом, необычном направлении, приводящем к развитию аномалий, пороков и уродств.
   К неблагоприятным факторам относятся курение, прием алкоголя, наркомания, вредные вещества, содержащиеся в воздухе, питьевой воде, продуктах питания, некоторые лекарственные препараты. В настоящее время в связи с экологической обстановкой нарастает число новорожденных с различными указанными выше отклонениями.

Тема 8. ОБЩИЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ ТКАНЕЙ

   Ткань – исторически (филогенетически) сложившаяся система клеток и неклеточных структур, обладающая общностью строения, а иногда и происхождения и специализированная на выполнении определенных функций. Ткань – это новый (после клеток) уровень организации живой материи.
   Структурные компоненты ткани: клетки, производные клеток, межклеточное вещество.
   Характеристика структурных компонентов ткани
   Клетки – основные, функционально ведущие компоненты тканей. Практически все ткани состоят из нескольких типов клеток. Кроме того, клетки каждого типа в тканях могут находиться на разных этапах зрелости (дифференцировки). Поэтому в ткани различают такие понятия, как клеточная популяция и клеточный дифферон.
   Клеточная популяция – это совокупность клеток данного типа. Например, в рыхлой соединительной ткани (самой распространенной в организме) содержится:
   1) популяция фибробластов;
   2) популяция макрофагов;
   3) популяция тканевых базофилов и др.
   Клеточный дифферон (или гистогенетический ряд) – это совокупность клеток данного типа (данной популяция), находящихся на различных этапах дифференцировки. Исходными клетками дифферона являются стволовые клетки, далее идут молодые (бластные) клетки, созревающие клетки и зрелые клетки. Различают полный дифферон или неполный в зависимости от того, находятся ли в тканях клетки всех типов развития.
   Однако ткани – это не просто скопление различных клеток. Клетки в тканях находятся в определенной взаимосвязи, и функция каждой из них направлена на выполнение функции ткани.
   Клетки в тканях оказывают влияние друг на друга или непосредственно через щелевидные контакты (нексусы) и синапсы, или на расстоянии (дистантно) посредством выделения различных биологически активных веществ.
   Производные клеток:
   1) симпласты (слияние отдельных клеток, например мышечное волокно);
   2) синцитий (несколько клеток, соединенных между собой отростками, например сперматогенный эпителий извитых канальцев семенника);
   3) постклеточные образования (эритроциты, тромбоциты).
   Межклеточное вещество – также продукт деятельности определенных клеток. Межклеточное вещество состоит из:
   1) аморфного вещества;
   2) волокон (коллагеновых, ретикулярных, эластических).
   Межклеточное вещество неодинаково выражено в разных тканях.
   Развитие тканей в онтогенезе (эмбриогенезе) и филогенезе
   В онтогенезе различают следующие этапы развития тканей:
   1) этап ортотопической дифференцировки. На этом этапе зачатки будущих определенных тканей локализуются сначала в определенных участках яйцеклетки и затем – зиготы;
   2) этап бластомерной дифференцировки. В результате дробления зиготы презумптивные (предположительные) зачатки тканей оказываются локализованными в разных бластомерах зародыша;
   3) этап зачатковой дифференцировки. В результате гаструляции предположительные зачатки тканей локализуются в определенных участках зародышевых листков;
   4) гистогенез. Это процесс преобразования зачатков тканей и ткани в результате пролиферации, роста, индукции, детерминации, миграции и дифференцировки клеток.
   Имеется несколько теорий развития тканей в филогенезе:
   1) закон параллельных рядов (А. А. Заварзин). Ткани животных и растений разных видов и классов, выполняющие одинаковые функции, имеют сходное строение, т. е. развиваются они параллельно у животных различных филогенетических классов;
   2) закон дивергентной эволюции (Н. Г. Хлопин). В филогенезе происходит расхождение признаков тканей и появление новых разновидностей ткани в пределе тканевой группы, что приводит к усложнению животных организмов и появлению разнообразия тканей.
   Классификации тканей
   Имеется несколько подходов к классификации тканей. Общепринятой является морфофункциональная классификация, в соответствии с которой выделяют четыре тканевые группы:
   1) эпителиальные ткани;
   2) соединительные ткани (ткани внутренней среды, опорнотрофические ткани);
   3) мышечные ткани;
   4) нервную ткань.
   Тканевой гомеостаз (или поддержание структурного постоянства тканей)
   Состояние структурных компонентов тканей и их функциональная активность постоянно изменяются под воздействием внешних факторов. Прежде всего отмечаются ритмические колебания структурно-функционального состояния тканей: биологические ритмы (суточные, недельные, сезонные, годичные). Внешние факторы могут вызывать адаптивные (приспособительные) и дезадаптивные изменения, приводящие к распаду тканевых компонентов. Имеются регуляторные механизмы (внутритканевые, межтканевые, организменные), обеспечивающие поддержание структурного гомеостаза.
   Внутритканевые регуляторные механизмы обеспечиваются, в частности, способностью зрелых клеток выделять биологически активные вещества (кейлоны), угнетающие размножение молодых (стволовых и бластных) клеток этой же популяции. При гибели значительной части зрелых клеток выделение кейлонов уменьшается, что стимулирует пролиферативные процессы и приводит к восстановлению численности клеток данной популяции.
   Межтканевые регуляторные механизмы обеспечиваются индуктивным взаимодействием, прежде всего с участием лимфоидной ткани (иммунной системы) в поддержании структурного гомеостаза.
   Организменные регуляторные факторы обеспечиваются влиянием эндокринной и нервной систем.
   При некоторых внешних воздействиях может нарушиться естественная детерминация молодых клеток, что может привести к превращению одного тканевого типа в другой. Такое явление носит название «метаплазия» и осуществляется только в пределах данной тканевой группы. Например, замена однослойного призматического эпителия желудка однослойным плоским.
   Регенерация тканей
   Регенерация – восстановление клеток, тканей и органов, направленное на поддержание функциональной активности данной системы. В регенерации различают такие понятия, как форма регенерации, уровень регенерации, способ регенерации.
   Формы регенерации:
   1) физиологическая регенерация – восстановление клеток ткани после их естественной гибели (например, кроветворение);
   2) репаративная регенерация – восстановление тканей и органов после их повреждения (травм, воспалений, хирургических воздействий и т. д.).
   Уровни регенерации:
   1) клеточный (внутриклеточный);
   2) тканевой;
   3) органный.
   Способы регенерации:
   1) клеточный;
   2) внутриклеточный;
   3) заместительный.
   Факторы, регулирующие регенерацию:
   1) гормоны;
   2) медиаторы;
   3) кейлоны;
   4) факторы роста и др.
   Интеграция тканей
   Ткани, являясь одним из уровней организации живой материи, входят в состав структур более высокого уровня организации живой материи – структурно-функциональных единиц органов и в состав органов, в которых происходит интеграция (объединение) нескольких тканей.
   Механизмы интеграции:
   1) межтканевые (обычно индуктивные) взаимодействия;
   2) эндокринные влияния;
   3) нервные влияния.
   Например, в состав сердца входят сердечная мышечная ткань, соединительная ткань, эпителиальная ткань.

Тема 9. ЭПИТЕЛИАЛЬНЫЕ ТКАНИ

   Характеристика эпителиальных тканей
   Они образуют внешние и внутренние покровы организма.
   Функции эпителиев:
   1) защитная (барьерная);
   2) секреторная;
   3) экскреторная;
   4) всасывательная.
   Структурно-функциональные особенности эпителиальных тканей:
   1) расположение клеток пластами;
   2) расположение клеток на базальной мембране;
   3) преобладание клеток над межклеточным веществом;
   4) полярная дифференцированность клеток (на базальный и апикальный полюсы);
   5) отсутствие кровеносных и лимфатических сосудов;
   6) высокая способность клеток к регенерации.
   Структурные компоненты эпителиальной ткани:
   1) эпителиальные клетки (эпителиоциты);
   2) базальная мембрана.
   Эпителиоциты являются основными структурными элементами эпителиальных тканей.
   Базальная мембрана (толщина около 1 мкм) состоит из:
   1) тонких коллагеновых фибрилл (из белка коллагена четвертого типа);
   2) аморфного вещества (матрикса), состоящего из углеводно-белково-липидного комплекса.
   Функции базальной мембраны:
   1) барьерная (отделение эпителия от соединительной ткани);
   2) трофическая (диффузия питательных веществ и продуктов метаболизма из подлежащей соединительной ткани и обратно);
   3) организующая (прикрепление эпителиоцитов с помощью полудесмосом).
   Классификация эпителиальных тканей
   Существуют следующие виды эпителия:
   1) покровный эпителий;
   2) железистый эпителий.
   Генетическая классификация эпителиев (по Н. Г. Хлопину):
   1) эпидермальный тип (развивается из эктодермы);
   2) энтородермальный тип (развивается из энтодермы);
   3) целонефродермальный тип (развивается из мезодермы);
   4) эпендимоглиальный тип (развивается из нейроэктодермы);
   5) ангиодермальный тип (или эндотелий сосудов, развивающийся из мезенхимы).
   Топографическая классификация эпителия:
   1) кожный тип (эпидермис кожи);
   2) желудочно-кишечный;
   3) почечный;
   4) печеночный;
   5) дыхательный;
   6) сосудистый (эндотелий сосудов);
   7) эпителий серозных полостей (брюшины, плевры, перикарда).
   Железистый эпителий образует большинство желез организма. Состоит из железистых клеток (гландулоцитов) и базальной мембраны.
   Классификация желез
   По количеству клеток:
   1) одноклеточные (бокаловидная железа);
   2) многоклеточные (подавляющее большинство желез).
   По расположению клеток в эпителиальном пласте:
   1) эндоэпителиальные (бокаловидная железа);
   2) экзоэпителиальные.
   По способу выведения секрета из железы и по строению:
   1) экзокринные железы (имеют выводной проток);
   2) эндокринные железы (не имеют выводных протоков и выделяют секреты (гормоны) в кровь или лимфу).
   По способу выделения секрета из железистой клетки:
   1) мерокриновые;
   2) апокриновые;
   3) голокриновые.
   По составу выделяемого секрета:
   1) белковые (серозные);
   2) слизистые;
   3) смешанные (белково-слизистые);
   4) сальные.
   По строению:
   1) простые;
   2) сложные;
   3) разветвленные;
   4) неразветвленные.
   Фазы секреторного цикла железистых клеток
   Существуют следующие фазы секреторного цикла железистых клеток:
   1) поглощение исходных продуктов секретообразования;
   2) синтез и накопление секрета;
   3) выделение секрета (по мерокриновому или апокриновому типу);
   4) восстановление железистой клетки.

Тема 10. КРОВЬ И ЛИМФА

   Характеристика и состав крови
   Кровь – это ткань или одна из разновидностей соединительных тканей.
   Система крови включает в себя следующие компоненты:
   1) кровь и лимфу;
   2) органы кроветворения и иммунопоэза;
   3) клетки крови, выселившиеся из крови в соединительную и эпителиальную ткани и способные вернуться (рециркулировать) снова в кровеносное русло (лимфоциты).
   Кровь, лимфа и рыхлая неоформленная соединительная ткань составляют внутреннюю среду организма.
   Функции крови:
   1) транспортная. Данная функция крови крайне разнообразна. Кровь осуществляет перенос газов (за счет способности гемоглобина связывать кислород и углекислый газ), различных питательных и биологически активных веществ;
   2) трофическая. Питательные вещества поступают в организм с пищей, затем расщепляются в желудочно-кишечном тракте до белков, жиров и углеводов, всасываются и переносятся кровью к различным органам и тканям;
   3) дыхательная. Осуществляется в виде транспорта кислорода и углекислого газа. Оксигенированный в легких гемоглобин (оксигемоглобин) доставляется кровью по артериям ко всем органам и тканям, где происходит газообмен (тканевое дыхание), кислород расходуется на аэробные процессы, а углекислота связывается гемоглобином крови (карбоксигемоглобинам) и по венозному кровотоку доставляется в легкие, где вновь происходит оксигенация;
   4) защитная. В крови имеются клетки и системы, обеспечивающие неспецифическую (система комплемента, фагоциты, NK-клетки) и специфическую (Т– и В-системы иммунитета) защиту;
   5) экскреторная. Кровь выводит продукты распада макромолекул (мочевина и креатинин выводятся почками с мочой).
   В совокупности эти функции обеспечивают гомеостаз (постоянство внутренней среды организма).
   Составные компоненты крови:
   1) клетки (форменные элементы);
   2) жидкое межклеточное вещество (плазма крови).
   Соотношение частей крови: плазма – 55 – 60%, форменные элементы – 40 – 45%.
   Плазма крови состоит из:
   1) воды (90 – 93%);
   2) содержащихся в ней веществ (7 – 10%).
   В плазме содержатся белки, аминокислоты, нуклеотиды, глюкоза, минеральные вещества, продукты обмена.
   Белки плазмы крови:
   1) альбумины;
   2) глобулины (в том числе иммуноглобулины);
   3) фибриноген;
   4) белки-ферменты и др.
   Функция плазмы – транспорт растворимых веществ.
   В связи с тем что в крови содержатся как истинные клетки (лейкоциты), так и постклеточные образования (эритроциты и тромбоциты), в совокупности их принято именовать их в совокупности форменными элементами.
   Качественный и количественный состав крови (анализ крови) – гемограмма и лейкоцитарная формула.
   Гемограмма взрослого человека:
   1) эритроцитов содержится:
   а) у мужчин – 3,9 – 5,5 x 1012 в 1 л, или 3,9 – 5,5 млн в 1 мкл, концентрация гемоглобина 130 – 160 г/л;
   б) у женщин – 3,7 – 4,9 x 1012, гемоглобин – 120 – 150 г/л;
   2) тромбоцитов – 200 – 300 x 109 в 1 л;
   3) лейкоцитов – 3,8 – 9 x 109 в 1 л.
   Структурная и функциональная характеристика форменных элементов крови
   Эритроциты – преобладающая популяция форменных элементов крови. Морфологические особенности:
   1) не содержат ядра;
   2) не содержат большинства органелл;
   3) цитоплазма заполнена пигментным включением (гемоглобином).
   Форма эритроцитов:
   1) двояковогнутые диски – дискоциты (80%);
   2) остальные 20% – сфероциты, планоциты, эхиноциты, седловидные, двуямочные.
   По размеру можно выделить следующие виды эритроцитов:
   1) нормоциты (7,1 – 7,9 мкм, концентрация нормоцитов в периферической крови – 75%);
   2) макроциты (размером более 8 мкм, количество – 12,5%);
   3) микроциты (размером менее 6 мкм – 12,5%).
   Различаются две формы гемоглобина эритроцитов:
   1) НbА;
   2) HbF.
   У взрослого человека НbА – 98%, HbF – 2%. У новорожденных НbА – 20%, HbF – 80%. Продолжительность жизни эритроцитов – 120 дней. Старые эритроциты разрушаются макрофагами, в основном в селезенке, а освобождающееся из них железо используется созревающими эритроцитами.
   В периферической крови имеются незрелые формы эритроциты, называемые ретикулоцитами (1 – 5% от общего числа эритроцитов).
   Функции эритроцитов:
   1) дыхательная (транспорт газов: O2 и СО2);
   2) транспорт других веществ, адсорбированных на поверхности цитолеммы (гормонов, иммуноглобулинов, лекарственных препаратов, токсинов и др.).
   Тромбоциты (или кровяные пластинки) – фрагменты цитоплазмы особых клеток красного костного мозга (мегакариоцитов).
   Составные части тромбоцита:
   1) гиаломер (основа пластинки, окруженная плазмолеммой);
   2) грануломер (зернистость, представленная специфическими гранулами, а также фрагментами зернистой ЭПС, рибосомами, митохондриями и др.).
   Форма – округлая, овальная, отростчатая.
   По степени зрелости тромбоциты подразделяются на:
   1) юные;
   2) зрелые;
   3) старые;
   4) дегенеративные;
   5) гигантские.
   Продолжительность жизни – 5 – 8 дней.
   Функция тромбоцитов – участие в механизмах свертывания крови посредством:
   1) склеивания пластинок и образования тромба;
   2) разрушения пластинок и выделения одного из многочисленных факторов, способствующих превращению глобулярного фибриногена в нитчатый фибрин.
   Лейкоциты (или белые кровяные тельца) – ядерные клетки крови, выполняющие защитную функцию. Содержатся в крови от нескольких часов до нескольких суток, а затем покидают кровеносное русло и проявляют свои функции в основном в тканях.
   Лейкоциты представляют неоднородную группу и подразделяются на несколько популяций.
   Лейкоцитарная формула
   Лейкоцитарная формула – процентное содержание различных форм лейкоцитов (к общему числу лейкоцитов, равному 100%).
   Морфологическая и функциональная характеристика зернистых лейкоцитов
   Нейтрофильные лейкоциты (или нейтрофилы) – самая большая популяция лейкоцитов (65 – 75%.). Морфологические особенности нейтрофилов:
   1) сегментированное ядро;
   2) в цитоплазме мелкие гранулы, окрашивающиеся в слабооксифильный (розовый) цвет, среди которых можно выделить неспецифические гранулы – разновидности лизосом, специфические гранулы. Органеллы у лейкоцитов не развиты. Размер в мазке составляет 10 – 12 мкм.
   По степени зрелости нейтрофилы подразделяются на:
   1) юные (метамиелоциты) – 0 – 0,5%;
   2) палочкоядерные – 3 – 5%;
   3) сегментоядерные (зрелые) – 60 – 65%.
   Увеличение процентного содержания юных и палочкоядерных форм нейтрофилов носит название сдвига лейкоцитарной формулы влево и является важным диагностическим показателем. Общее увеличение количества нейтрофилов в крови и появление юных форм наблюдается при различных воспалительных процессах в организме. В настоящее время по нейтрофильным лейкоцитам возможно определение половой принадлежности крови – у женщин один из сегментов имеет околоядерный сателлит (или придаток) в виде барабанной палочки.
   Продолжительность жизни нейтрофилов – 8 дней, из них 8 – 12 ч они находятся в крови, а затем выходят в соединительную и эпителиальную ткани, где и выполняют основные функции.
   Функции нейтрофилов:
   1) фагоцитоз бактерий;
   2) фагоцитоз иммунных комплексов («антиген – антитело»);
   3) бактериостатическая и бактериолитическая;
   4) выделение кейлонов и регуляция размножения лейкоцитов.
   Эозинофильные лейкоциты (или эозинофилы). Содержание в норме – 1 – 5%. Размеры в мазках – 12 – 14 мкм.
   Морфологические особенности эозинофилов:
   1) имеется двухсегментное ядро;
   2) в цитоплазме отмечается крупная оксифильная (красная) зернистость;
   3) другие органеллы развиты слабо.
   Среди гранул эозинофилов выделяют неспецифические азурофильные гранулы – разновидность лизосом, содержащую фермент пероксидазу и специфические гранулы, содержащие кислую фосфатазу. Органеллы у эозинофилов развиты слабо.
   По степени зрелости эозинофилы также подразделяются на юные, палочкоядерные и сегментоядерные, однако определение этих субпопуляций в клинических лабораториях производится редко.
   К способам нейтрализации гистамина и серотонина относятся фагоцитоз и адсорбция этих биологически активных веществ на цитолемме, выделение ферментов, расщепляющих их внеклеточно, выделение факторов, препятствующих выбросу гистамина и серотонина.
   Функции эозинофилов – участия в иммунологических (аллергических и анафилактических) реакциях: угнетают (ингибируют) аллергические реакции посредством нейтрализации гистамина и серотонина.
   Участием эозинофилов в аллергических реакциях объясняется их повышенное содержание (до 20 – 40% и более) в крови при различных аллергических заболеваниях (глистных инвазиях, бронхиальной астме, при раке и др.).
   Продолжительность жизни эозинофилов – 6 – 8 дней, из них нахождение в кровеносном русле составляет 3 – 8 ч.
   Базофильные лейкоциты (или базофилы). Это наименьшая популяция зернистых лейкоцитов (0,5 – 1%), однако в общей массе в организме их имеется огромное количество.
   Размеры в мазке – 11 – 12 мкм.
   Морфология:
   1) крупное слабо сегментированное ядро;
   2) в цитоплазме содержатся крупные гранулы;
   3) другие органеллы развиты слабо.
   Функции базофилов – участия в иммунных (аллергических) реакциях посредством выделения гранул (дегрануляции) и содержащихся в них вышеперечисленных биологически активных веществ, которые и вызывают аллергические проявления (отек ткани, кровенаполнение, зуд, спазм гладкой мышечной ткани и др.).
   Базофилы также обладают способностью к фагоцитозу.
   Морфологическая и функциональная характеристика незернистых лейкоцитов
   Агранулоциты не содержат гранул в цитоплазме и подразделяются на две совершенно различные клеточные популяции – лимфоциты и моноциты.
   Лимфоциты являются клетками иммунной системы.
   Лимфоциты при участии вспомогательных клеток (макрофагов) обеспечивают иммунитет, т. е. защиту организма от генетически чужеродных веществ. Лимфоциты являются единственными клетками крови, способными при определенных условиях митотически делиться. Все остальные лейкоциты являются конечными дифференцированными клетками. Лимфоциты – гетерогенная (неоднородная) популяция клеток.
   По размерам лимфоциты подразделяются на:
   1) малые (4,5 – 6 мкм);
   2) средние (7 – 10 мкм);
   3) большие (больше 10 мкм).
   В периферической крови до 90% составляют малые лимфоциты и 10 – 12% – средние. Большие лимфоциты в периферической крови в норме не встречаются. При электронно-микроскопическом исследовании малые лимфоциты можно подразделить на светлые и темные.
   Малые лимфоциты характеризуются:
   1) наличием крупного круглого ядра, состоящего в основном из гетерохроматина, особенно в мелких темных лимфоцитах;
   2) узким ободком базофильной цитоплазмы, в которой содержатся свободные рибосомы и слабо выраженные органеллы – эндоплазматическая сеть, единичные митохондрии и лизосомы.
   Для средних лимфоцитов характерно:
   1) более крупное и рыхлое ядро, состоящее из эухроматина в центре и гетерохроматина по периферии;
   2) в цитоплазме по сравнению с малыми лимфоцитами более развиты эндоплазматическая сеть и комплекс Гольджи, больше митохондрий и лизосом.
   По источникам развития лимфоциты подразделяются на:
   1) Т-лимфоциты. Их образование и дальнейшее развитие связано с тимусом (вилочковой железой);
   2) В-лимфоциты. Их развитие у птиц связано с особым органом (фабрициевой сумкой), а у млекопитающих и человека – с пока точно не установленным ее аналогом.
   Кроме источников развития, Т– и В-лимфоциты различаются между собой и по выполняемым функции.
   По функции:
   1) В-лимфоциты и образующиеся из них плазмоциты обеспечивают гуморальный иммунитет, т. е. защиту организма от чужеродных корпускулярных антигенов (бактерий, вирусов, токсинов, белков и др.), содержащихся в крови, лимфотканевой жидкости;
   2) Т-лимфоциты, которые по выполняемым функциям подразделяются на следующие субпопуляции: киллеры, хелперы, супрессоры.
   Однако эта простая классификация устарела, и сейчас принято все лимфоциты классифицировать по наличию на их мембране рецепторов (CD). В соответствии с этим выделяют лимфоциты CD3, CD4, CD8 и т. д.
   По продолжительности жизни лимфоциты подразделяются на:
   1) короткоживущие (недели, месяцы) – преимущественно В-лимфоциты;
   2) долгоживущие (месяцы, годы) – преимущественно Т-лимфоциты.
   Моноциты – наиболее крупные клетки крови (18 – 20 мкм), имеющие крупное бобовидное или подковообразное ядро и хорошо выраженную базофильную цитоплазму, в которой содержатся множественные пиноцитозные пузырьки, лизосомы и другие общие органеллы.
   По своей функции – фагоциты. Моноциты являются не вполне зрелыми клетками. Циркулируют в крови 2 – 3 суток, после чего покидают кровеносное русло, мигрируют в разные ткани и органы и превращаются в различные формы макрофагов, фагоцитарная активность которых значительно выше моноцитов. Моноциты и образующиеся из них макрофаги объединяются в единую макрофагическую систему (или мононуклеарную фагоцитарную систему (МФС)).
   Особенности лейкоцитарной формулы у детей
   У новорожденных в общем анализе крови эритроцитов 6 – 7 x 1012 в литре – физиологический эритроцитоз, количество гемоглобина достигает 200 г в 1 л, лейкоцитов 10 – 30 x 109 в 1 л – физиологический возрастной лейкоцитоз, количество тромбоцитов такое же, как и у взрослых – 200 – 300 x 109 в л.
   После рождения количество эритроцитов и гемоглобина постепенно снижается, достигая сначала показателей взрослых (5 млн в 1 мкл), а затем развивается физиологическая анемия. Уровень эритроцитов и гемоглобина достигает показателей взрослых только к периоду полового созревания. Количество лейкоцитов через 2 недели после рождения снижается до 10 – 15 x 109 в 1 л, а к периоду полового созревания достигает значений взрослого человека.
   Наибольшие изменения в лейкоцитарной формуле у детей отмечаются в содержании лимфоцитов и нейтрофилов. Остальные показатели не отличаются от значений взрослых.
   При рождении соотношение нейтрофилов и лимфоцитов аналогично показателям взрослых – 65 – 75% к 20 – 35%. В первые дни жизни ребенка наблюдается снижение концентрации нейтрофилов и повышение содержания лимфоцитов, на 4 – 5-е сутки их количество сравнивается – по 45% (первый физиологический перекрест). Далее у детей наблюдаются физиологический лимфоцитоз – до 65% и физиологическая нейтропения – 25%, наиболее низкие показатели нейтрофилов наблюдаются к концу второго года жизни. После этого начинается постепенное повышение содержания нейтрофилов и снижение концентрации лимфоцитов, в возрасте 4 – 5 лет наблюдается второй физиологический перекрест. К периоду полового созревания соотношение нейтрофилов и лимфоцитов приходит к уровню взрослого человека.
   Составные компоненты и функции лимфы
   Лимфа состоит из лимфоплазмы и форменных элементов, в основном лимфоцитов (98%), а также моноцитов, нейтрофилов, иногда эритроцитов. Лимфоплазма образуется посредством проникновения тканевой жидкости в лимфатические капилляры, а затем отводится по лимфатическим сосудам различного калибра и вливается в венозную систему. По пути движения лимфа проходит через лимфатические узлы, в которых она очищается от экзогенных и эндогенных частиц, а также обогащается лимфоцитами.
   Функции лимфатической системы:
   1) дренирование тканей;
   2) обогащение лимфоцитами;
   3) очищение лимфы от экзогенных и эндогенных веществ.

Тема 11. КРОВЕТВОРЕНИЕ

   Кроветворение (гемоцитопоэз) – процесс образования форменных элементов крови.
   Различают два вида кроветворения:
   1) миелоидное;
   2) лимфоидное.
   В свою очередь миелоидное кроветворение подразделяется на:
   1) эритроцитопоэз;
   2) гранулоцитопоэз;
   3) тромбоцитопоэз;
   4) моноцитопоэз.
   Лимфоидное кроветворение подразделяется на:
   1) Т-лимфоцитопоэз;
   2) В-лимфоцитопоэз.
   Кроме того, гемопоэз подразделяется на два периода:
   1) эмбриональный;
   2) постэмбриональный.
   Эмбриональный период приводит к образованию крови как ткани и потому представляет собой гистогенез крови. Постэмбриональный гемопоэз представляет процесс физиологической регенерации крови как ткани.
   Эмбриональный период гемопоэза
   Он осуществляется в эмбриогенезе поэтапно, сменяя разные органы кроветворения. В соответствии с этим выделяют три этапа:
   1) желточный;
   2) гепатотимусолиенальный;
   3) медуллотимусолимфоидный.
   1. Желточный этап осуществляется в мезенхиме желточного мешка начиная со 2 – 3-й недели эмбриогенеза, с 4-й – снижается и к концу 3-го месяца полностью прекращается.
   Вначале в желточном мешке в результате пролиферации мезенхимальных клеток образуются так называемые кровяные островки, представляющие собой очаговые скопления отростчатых клеток.
   Наиболее важными моментами желточного этапа являются:
   1) образование стволовых клеток крови;
   2) образование первичных кровеносных сосудов.
   Несколько позже (на 3-й неделе) начинают формироваться сосуды в мезенхиме тела зародыша, однако они являются пустыми щелевидными образованиями. Довольно скоро сосуды желточного мешка соединяются с сосудами тела зародыша, и устанавливается желточный круг кровообращения. Из желточного мешка по этим сосудам стволовые клетки мигрируют в тело зародыша и заселяют закладки будущих кроветворных органов (в первую очередь печень), в которых затем и осуществляется кроветворение.
   2. Гепатотимусолиенальный этап) гемопоэза осуществляется вначале в печени, несколько позже в тимусе (вилочковой железе), а затем и в селезенке. В печени происходит (только экстраваскулярно) в основном миелоидное кроветворение начиная с 5-й недели и до конца 5-го месяца, а затем постепенно снижается и к концу эмбриогенеза полностью прекращается. Тимус закладывается на 7 – 8-й неделе, а несколько позже в нем начинается Т-лимфоцитопоэз, который продолжается до конца эмбриогенеза, а затем и в постнатальном периоде до его инволюции (в 25 – 30 лет). Селезенка закладывается на 4-й неделе, с 7 – 8-й недели она заселяется стволовыми клетками, и в ней начинается универсальное кроветворение, т. е. и миело– и лимфопоэз. Особенно активно кроветворение протекает в селезенке с 5-го по 7-й месяцы, а затем миелоидное кроветворение постепенно угнетается, и к концу эмбриогенеза (у человека) оно полностью прекращается.
   3. Медуллотимусолимфоидный этап кроветворения. Закладка красного костного мозга начинается со 2-го месяца, кроветворение в нем начинается с 4-го месяца, а с 6-го месяца он является основным органом миелоидного и частично лимфоидного кроветворения, т. е. является универсальным кроветворным органом. В это же время в тимусе, селезенке и в лимфатических узлах осуществляется лимфоидное кроветворение.
   В результате последовательной смены органов кроветворения и совершенствования процесса кроветворения формируется кровь как ткань, которая у новорожденных имеет существенные отличия от крови взрослых людей.
   Постэмбриональный период кроветворения
   Осуществляется в красном костном мозге и лимфоидных органах (тимусе, селезенке, лимфоузлах, миндалинах, лимфоидных фолликулах).
   Сущность процесса кроветворения заключается в пролиферации и поэтапной дифференцировке стволовых клеток в зрелые форменные элементы крови.
   В схеме кроветворения представлены два ряда кроветворения:
   1) миелоидное;
   2) лимфоидное.
   Каждый вид кроветворения подразделяется на разновидности (или ряды) кроветворения.
   Миелопоэз:
   1) эритроцитопоэз (или эритроцитарный ряд);
   2) гранулоцитопоэз (или грануляцитарный ряд);
   3) моноцитопоэз (или моноцитарный ряд);
   4) тромбоцитопоэз (или тромбоцитарный ряд).
   Лимфопоэз:
   1) Т-лимфоцитопоэз (или Т-лимфоцитарный ряд;
   2) В-лимфоцитопоэз;
   3) плазмоцитопоэз.
   В процессе поэтапной дифференцировки стволовых клеток в зрелые форменные элементы крови в каждом ряду кроветворения образуются промежуточные типы клеток, которые в схеме кроветворения составляют классы клеток.
   Всего в схеме кроветворения различают шесть классов клеток.
   I класс – стволовые клетки. По морфологии клетки этого класса соответствуют малому лимфоциту. Эти клетки являются полипотентными, т. е. способны дифференцироваться в любой форменный элемент крови. Направление дифференцировки зависит от содержания форменных элементов в крови, а также от влияния микроокружения стволовых клеток – индуктивных влияний стромальных клеток костного мозга или другого кроветворного органа. Поддержание популяции стволовых клеток осуществляется следующим образом. После митоза стволовой клетки образуются две: одна вступает на путь дифференцировки до форменного элемента крови, а другая принимает морфологию лимфоцита малого размера, остается в костном мозге, является стволовой. Деление стволовых клеток происходит очень редко, их интерфаза составляет 1 – 2 года, при этом 80% стволовых клеток находятся в состоянии покоя и только 20% – в митозе и последующей дифференцировке. Стволовые клетки также получили название колинеобразующие единицы, так как каждая стволовая клетка дает группу (или клон) клеток.
   II класс – полустволовые клетки. Эти клетки являются ограниченно полипотентными. Выделяют две группы клеток – предшественницы миелопоэза и лимфопоэза. По морфологии похожи на малый лимфоцит. Каждая из этих клеток дает клон миелоидного или лимфоидного ряда. Деление происходит раз в 3 – 4 недели. Поддержание популяции осуществляется аналогично полипотентным клеткам: одна клетка после митоза вступает в дальнейшую дифференцировку, а вторая остается полустволовой.
   III класс – унипотентные клетки. Данный класс клеток является поэтинчувствительными – предшественниками своего ряда кроветворения. По морфологии они также соответствуют малому лимфоциту и способны к дифференцировке только в один форменный элемент крови. Частота деления данных клеток зависит от содержания в крови поэтина – биологически активного вещества, специфического для каждого ряда кроветворения, – эритропоэтина, тромбоцитопоэтина. После митоза клеток данного класса одна клетка вступает в дальнейшую дифференцировку до форменного элемента, а вторая поддерживает популяцию клеток.
   Клетки первых трех классов объединяются в класс морфологически не идентифицируемых клеток, так как все они по морфологии напоминают малый лимфоцит, однако способности их к развитию различны.
   IV класс – бластные клетки. Клетки этого класса отличаются по морфологии от всех остальных. Они крупные, имеют крупное рыхлое ядро (эухроматин) с 2 – 4 ядрышками, цитоплазма базофильна за счет большого количества свободных рибосом. Эти клетки часто делятся, и все дочерние вступают в дальнейшую дифференцировку. Бласты различных рядов кроветворения можно идентифицировать по цитохимическим свойствам.
   V класс – созревающие клетки. Этот класс характерен для своего ряда кроветворения. В этом классе может быть несколько разновидностей переходных клеток от одной (пролимфоцит, промоноцит) до пяти в эритроцитарном ряду. Некоторые созревающие клетки в небольшом количестве могут попадать в периферический кровоток, например ретикулоциты или палочкоядерные лейкоциты.
   VI класс – зрелые форменные элементы. К этому классы относятся эритроциты, тромбоциты и сегментоядерные гранулоциты. Моноциты не являются окончательно дифференцированными клетками. Они затем покидают кровеносное русло и дифференцируются в конечный класс – макрофаги. Лимфоциты дифференцируются в конечный класс при встрече с антигенами, при этом они превращаются в бласты и снова делятся.
   Совокупность клеток, составляющих линию дифференцировки стволовой клетки в определенный форменный элемент, образует дифферон (или гистогенетический ряд). Например, эритроцитарный дифферон составляют:
   1) стволовая клетка (I класс);
   2) полустволовая клетка – предшественница миелопоэза (II класс);
   3) унипотентная эритропоэтинчувствительная клетка (III класс);
   4) эритробласт (IV класс);
   5) созревающая клетка – пронормоцит, базофильный нормоцит, полихроматофильный нормоцит, оксифильный нормоцит, ретикулоцит (V класс);
   6) эритроцит (VI класс).
   В процессе созревания эритроцитов в V классе происходят синтез и накопление гемоглобина, редукция органелл и клеточного ядра. В норме пополнение эритроцитов осуществляется за счет деления и дифференцировки созревающих клеток – пронормоцитов, базофильных и полихроматофильных нормоцитов. Такой тип кроветворения получил название гомопластического. При выраженной кровопотере пополнение эритроцитов осуществляется не только усилением созревающих клеток, но и клеток IV, III, II и даже I класса – происходит гетеропластический тип кроветворения.

Тема 12. ИММУНОЦИТОПОЭЗ И УЧАСТИЕ ИММУННЫХ КЛЕТОК РЕАКЦИЯХ ИММУНИТЕТА

   В отличие от миелопоэза лимфоцитопоэз в эмбриональном и постэмбриональном периодах осуществляется поэтапно, сменяя разные лимфоидные органы. Как отмечалось ранее, лимфоцитопоэз подразделяется на:
   1) Т-лимфоцитопоэз;
   2) В-лимфоцитопоэз.
   В свою очередь, они делятся на три этапа:
   1) костномозговой этап;
   2) этап антигеннезависимой дифференцировки, осуществляемый в центральных иммунных органах;
   3) этап антигензависимой дифференцировки, осуществляемый в периферических лимфоидных органах.
   Т-лимфоцитопоэз
   Первый этап осуществляется в лимфоидной ткани красного костного мозга, где образуются следующие классы клеток:
   1) стволовые клетки – I класс;
   2) полустволовые клетки предшественники Т-лимфоцитопоэза – II класс;
   3) унипотентные Т-поэтинчувствительные клетки, предшественницы Т-лимфоцитопоэза. Эти клетки мигрируют в кровяное русло и достигают вилочковой железы (тимуса) – III класс.
   Второй этап – антигеннезависимая дифференцировка, которая осуществляется в корковом веществе тимуса. При этом происходит дальнейшее образование Т-лимфоцитов. Стромальными клетками выделяется тимозин, под влиянием которого происходит превращение унипотентных клеток в Т-лимфобласты. Они являются клетками IV класса в Т-лимфоцитопоэзе. Т-лимфобласты превращаются в Т-пролимфоциты (клетки V класса), а они в Т-лимфоциты – VI класс.
   В тимусе из унипотентных клеток развиваются самостоятельно три субпопуляции Т-лимфоцитов – Т-киллеры, Т-хелперы, Т-супрессоры.
   Образовавшиеся Т-лимфоциты приобретают в корковом веществе тимуса разные рецепторы к разнообразным антигенам, при этом сами антигены в тимус не поступают. Защита вилочковой железы от попадания чужеродных антигенов осуществляется за счет наличия гематотимусного барьера и отсутствия приносящих сосудов в тимусе.
   В результате второго этапа образуются субпопуляции Т-лимфоцитов, которые обладают различными рецепторами к определенным антигенам. В тимусе также происходит образование Т-лимфоцитов, обладающих рецепторами к антигенам собственных тканей, однако такие клетки сразу же разрушаются макрофагами.
   После образования Т-лимфоциты, не проникая в мозговое вещество тимуса, поступают в кровоток и заносятся в периферические лимфоидные органы.
   Третий этап (антигеннезависимая дифференцировка) осуществляется в Т-зависимых зонах периферических лимфоидных органов – лимфатических узлах и селезенке. Здесь создаются условия для встречи антигена с Т-лимфоцитом (киллером, хелпером или супрессором), имеющим рецептор к данному антигену.
   Чаще всего происходит не непосредственное взаимодействие Т-лимфоцита с антигеном, а опосредованное – через макрофаг. При поступлении в организм чужеродного антигена он вначале фагоцитируется макрофагом (завершенный фагоцитоз), частично расщепляется, а антигенная детерминанта выносится на поверхность макрофага, где концентрируется. Затем эти детерминанты передаются макрофагами на соответствующие рецепторы различных субпопуляций Т-лимфоцитов. Под влиянием специфического антигена происходит реакция бластотрансформации – превращение Т-лимфоцита в Т-лимфобласт. Дальнейшая дифференцировка клеток зависит от того, какая субпопуляция Т-лимфоцитов провзаимодействовала с антигеном.
   Т-киллерный лимфобласт дает следующие клоны клеток.
   1. Т-киллеры (или цитотоксические лимфоциты), являющиеся эффекторными клетками, обеспечивающими клеточный иммунитет. Т-киллеры обеспечивают первичный иммунный ответ – реакцию организма на первое взаимодействие с антигеном.
   В процессе уничтожения киллерами чужеродного антигена можно выделить два основных механизма: контактное взаимодействие – разрушение участка цитолеммы клетки-мишени и дистантное взаимодействие – выделение цитотоксических факторов, действующих на клетку-мишень постепенно и длительно.
   2. Клетки Т-памяти. Эти клетки при повторной встрече организма с тем же антигеном обеспечивают вторичный иммунный ответ, который сильнее и быстрее первичного.
   Т-хелперный лимфобласт дает следующие клоны клеток:
   1) Т-хелперы, секретирующие медиатор лимфокин, стимулирующий гуморальный иммунитет. Это индуктор иммунопоэза;
   2) клетки Т-памяти.
   Т-супрессорный лимфобласт дает следующие клоны клеток:
   1) Т-супрессоры;
   2) клетки Т-памяти.
   Таким образом, в ходе третьего этапа Т-лимфоцитопоэза происходит образование эффекторных клеток каждой субпопуляции Т-лимфоцитов (Т-киллеров, Т-хелперов и Т-супрессоров), обладающих определенной функцией, и клеток Т-памяти, обеспечивающих вторичный иммунный ответ.
   В клеточном иммунитете можно выделить два механизма уничтожение киллерами клеток-мишеней – контактное взаимодействие, при котором происходит разрушение участка цитолеммы клетки-мишени и ее гибель, и дистантное взаимодействие – выделение цитотоксических факторов, действующих на клетку-мишень постепенно и вызывающих ее гибель через определенное время.
   В-лимфоцитопоэз
   В процессе В-лимфоцитопоэза можно выделить следующие этапы.
   Первый этап – осуществляется в красном костном мозге, где образуются следующие классы клеток:
   1) стволовые клетки – I класс;
   2) полустволовые клетки, предшественницы лимфопоэза – II класс;
   3) унипотентные В-лимфопоэтинчувствительные клетки – предшественницы В-лимфоцитопоэза – III класс.
   Второй этап – антигеннезависимая дифференцировка – у птиц осуществляется в специальном органе – фабрициевой сумке, у млекопитающих в том числе и у человек такой орган не найден. Большинство исследователей считает, что второй этап (так же как и первый) осуществляется в красном костном мозге, где образуются В-лимфобласты – клетки IV класса. Затем происходит их пролиферация в В-пролимфоциты – клетки V класса и в В-лимфоциты – клетки VI класса. В процессе второго этапа В-лимфоциты приобретает разнообразные рецепторы к антигенам. При этом установлено, что рецепторы представлены белками – иммуноглобулинами, которые синтезируются в самих же созревающих В-лимфоцитах, затем выносятся на поверхность и встраиваются в плазмолемму. Концевые химические группировки у этих рецепторов различны, и именно этим объясняется специфичность восприятия ими определенных антигенных детерминант разных антигенов.
   Третий этап – антигензависимая дифференцировка осуществляется в В-зависимых зонах периферических лимфоидных органов – в селезенке и лимфатических узлах. Тут происходит встреча В-лимфоцитов с антигенами, их последующая активация и трансформация в иммунобласт. Это происходит только при участии дополнительных клеток – макрофагов, Т-хелперов и Т-супрессоров. Следовательно, для активации В-лимфоцитов необходима кооперация следующих клеток – В-лимфоцита, Т-хелпера или Т-супрессора, а также гуморального антигена – бактерии, вируса или белка полисахарида. Процесс взаимодействия протекает следующим образом: антигенпредставляющий макрофаг фагоцитирует антиген и выносит на поверхность клеточной мембраны антигенную детерминанту, после этого детерминанта воздействует на В-лимфоциты, Т-хелперы и Т-супрессоры. Таким образом, влияния антигенной детерминанты на В-лимфоцит недостаточно для реакции бластотрансформации, она протекает после активации Т-хелпера и выделения им активирующего лимфокина. После этого В-лимфоцит превращается в иммунобласт. После пролиферации иммунобласта образуются клоны клеток – плазмоциты – эффекторные клетки гуморального иммунитета, они синтезируют и выделяют в кровь иммуноглобулины – антитела различных классов и клетки В-памяти.
   Иммуноглобулины (антитела) взаимодействуют со специфическими антигенами, образуется комплекс «антиген – антитело», таким образом происходит нейтрализация чужеродных антигенов.
   Т-хелперы играют следующую функцию в осуществлении гуморального иммунитета – способствуют реакции бластотрансформации, заменяют синтез неспецифических иммуноглобулинов на специфические, стимулируют синтез и выделение иммуноглобулинов плазмоцитами.
   Т-супрессоры активируются этими же антигенами и выделяют лимфокины, угнетающие образование плазмоцитов и синтез ими иммуноглобулинов вплоть до полного прекращения. Таким образом, воздействие на В-лимфоцит Т-киллеров и Т-хелперов регулирует реакции гуморального иммунитета.

Тема 13. СОЕДИНИТЕЛЬНЫЕ ТКАНИ. СОБСТВЕННО СОЕДИНИТЕЛЬНЫЕ ТКАНИ

   В понятие «соединительные ткани» (ткани внутренней среды, опорно-трофические ткани) объединяются неодинаковые по морфологии и выполняемым функциям ткани, но обладающие некоторыми общими свойствами и развивающиеся из единого источника – мезенхимы.
   Структурно-функциональные особенности соединительных тканей:
   1) внутреннее расположение в организме;
   2) преобладание межклеточного вещества над клетками;
   3) многообразие клеточных форм;
   4) общий источник происхождения – мезенхима.
   Функции соединительных тканей:
   1) трофическая (метаболическая);
   2) опорная;
   3) защитная (механическая, неспецифическая и специфическая);
   4) репаративная (пластическая) и др.
   Наиболее распространенными в организме являются волокнистые соединительные ткани и особенно рыхлая волокнистая неоформленная ткань, которая входит в состав практически всех органов, образуя строму, слои и прослойки, сопровождая кровеносные сосуды.
   Морфологическая и функциональная характеристика рыхлой волокнистой неоформленной соединительной ткани
   Состоит из клеток и межклеточного вещества, которое, в свою очередь, состоит из волокон (коллагеновых, эластических, ретикулярных) и аморфного вещества.
   Морфологические особенности, отличающие рыхлую волокнистую соединительную ткань от других разновидностей соединительных тканей:
   1) многообразие клеточных форм (девять клеточных типов);
   2) преобладание в межклеточном веществе аморфного вещества над волокнами.
   Функции рыхлой волокнистой соединительной ткани:
   1) трофическая;
   2) опорная (образует строму паренхиматозных органов);
   3) защитная (неспецифическая и специфическая (участие в иммунных реакциях) защита);
   4) депо воды, липидов, витаминов, гормонов;
   5) репаративная (пластическая).
   Клеточные типы (клеточные популяции) рыхлой волокнистой соединительной ткани:
   1) фибробласты;
   2) макрофаги (гистиоциты);
   3) тканевые базофилы (тучные клетки);
   4) плазмоциты;
   5) жировые клетки (липоциты);
   6) пигментные клетки;
   7) адвентициальные плетки;
   8) перициты;
   9) клетки крови – лейкоциты (лимфоциты, нейтрофилы).
   Структурная и функциональная характеристика клеточных типов
   Фибробласты – преобладающая популяция клеток рыхлой волокнистой соединительной ткани. Они неоднородны по степени зрелости и функциональной специфичности и потому подразделяются на следующие субпопуляции:
   1) малодифференцированные клетки;
   2) дифференцированные (или зрелые клетки, или собственно фибробласты);
   3) старые фибробласты (дефинитивные) – фиброциты, а также специализированные формы фибробластов;
   4) миофибробласты;
   5) фиброкласты.
   Преобладающей формой являются зрелые фибробласты, функция которых заключается в синтезе и выделении в межклеточную среду белков коллагена и эластина, а также гликозамино-гликанов.
   Для структурной организации фибробластов характерно выраженное развитие синтетического аппарата – зернистой эндоплазматической сети и транспортного аппарата – пластинчатого комплекса Гольджи. Остальные органеллы развиты слабо. В фиброцитах зернистая ЭПС и пластинчатый комплекс редуцированы. В цитоплазме фибробластов содержатся микрофиламенты, содержащие сократительные белки актин и миозин, но особенно развиты эти органеллы в миофибробластах, благодаря которым они осуществляют стягивание молодой соединительной ткани при образовании рубца. Для фиброкластов характерно содержание в цитоплазме большого количества лизосом. Эти клетки способны выделять лизосомальные ферменты в межклеточную среду и с их помощью расщеплять коллагеновые или эластические волокна на фрагменты, а затем фагоцитировать расщепленные фрагменты внутриклеточно. Следовательно, для фиброкластов характерно осуществление лизиса межклеточного вещества, в том числе волокон (например, при инволюции матки после родов).
   Таким образом, различные формы фиброкластов образуют межклеточное вещество соединительной ткани (фибробласты), поддерживают его в определенном структурном и функциональном состоянии (фиброциты), разрушают его при определенных условиях (фиброкласты). Благодаря этим свойствам фибробластов осуществляется репаративная функция соединительной ткани.
   Макрофаги – клетки, осуществляющие защитную функцию, прежде всего посредством фагоцитоза крупных частиц.
   По современным данным макрофаги являются полифункциональными клетками. Образуются макрофаги из моноцитов после их выхода из кровеносного русла. Макрофаги характеризуются структурной и функциональной гетерогенностью в зависимости от степени зрелости, области локализации, а также от их активации антигенами или лимфоцитами.
   Защитная функция макрофагов проявляется в разных формах:
   1) неспецифическая защита (посредством фагоцитоза экзогенных и эндогенных частиц и их внутриклеточного переваривания);
   2) выделение во внеклеточную среду лизосомальных ферментов и других веществ;
   3) специфическая (или иммунологическая защита – участие в разнообразных иммунных реакциях).
   Макрофаги подразделяются на фиксированные и свободные. Макрофаги соединительной ткани являются подвижными или блуждающими и называются гистиоцитами.
   Различают макрофаги серозных полостей (перитонеальные и плевральные), альвеолярные, макрофаги печени (купферовские клетки), макрофаги центральной нервной системы – глиальные макрофаги, остеокласты.
   Все виды макрофагов объединяются в мононуклеарную фагоцитарную систему (или макрофагическую систему) организма.
   По функциональному состоянию макрофаги подразделяются на резидуальные (неактивные) и активированные. В зависимости от этого отличается и их внутриклеточное строение.
   Наиболее характерной структурной особенностью макрофагов является наличие выраженного лизосомального аппарата, т. е. в цитоплазме содержится много лизосом и фагосом.
   Особенностью гистоцитов является наличие на их поверхности многочисленных складок, инвагинаций и псевдоподий, отражающих передвижение клеток или захват ими разнообразных частиц. В плазмолемме макрофагов содержатся разнообразные рецепторы, с помощью которых они распознают различные, в том числе и антигенные частицы, а также разнообразные биологически активные вещества.
   Фагоцитируя антигенные вещества, макрофаги выделяют, концентрируют, а затем выносят на плазмолемму их активные химические группировки – антигенные детерминанты, а затем передают их на лимфоциты. Данная функция называется антигенпредставляющей. С помощью данной функции макрофаги запускают антигенные реакции, так как установлено, что большинство антигенных веществ не способно запускать иммунные реакции самостоятельно, т. е. действовать непосредственно на рецепторы лимфоцитов. Кроме того, активированные макрофаги выделяют некоторые биологически активные вещества – монокины, которые регулирующее влияние на различные стороны иммунных реакций.
   Макрофаги принимают участие в заключительных стадиях иммунных реакций как гуморального, так и клеточного иммунитета. В гуморальном иммунитете они фагоцитируют иммунные комплексы «антиген – антитело», а в клеточном иммунитете под влиянием лимфокинов макрофаги приобретают киллерные свойства и могут разрушать чужеродные, в том числе и опухолевые, клетки.
   Таким образом, макрофаги не являются иммунными клетками, но принимают участие в иммунных реакциях.
   Макрофаги также синтезируют и выделяют в межклеточную среду около сто различных биологически активных веществ. Поэтому макрофаги можно отнести к секреторным клеткам.
   Тканевые базофилы (тучные клетки) являются истинными клетками рыхлой волокнистой соединительной ткани.
   Функция этих клеток заключается в регуляции местного тканевого гомеостаза.
   Это достигается посредством синтеза тканевыми базофилами и последующим выделением в межклеточную среду гликозамино-гликанов (гепарина и хондроитинсерных кислот), гистамина, серотонина и других биологически активных веществ, которые оказывают влияние на клетки и межклеточное вещество соединительной ткани.
   Наибольшее влияние эти биологически активные вещества оказывают на микроциркуляторное русло, где вызывают повышение проницаемости гемокапилляров, усиливают гидратацию межклеточного вещества. Продукты тучных клеток оказывают влияние на иммунные реакции и на процессы воспаления и аллергии.
   Источники образования тучных клеток в настоящее время окончательно не установлены.
   Для ультраструктурной организации тканевых базофилов характерно наличие в цитоплазме двух типов гранул:
   1) метахроматических гранул, окрашивающихся основными красителями с изменением цвета окраски;
   2) ортохроматических гранул, окрашивающихся основными красителями без изменения цвета и представляющих собой лизосомы.
   При возбуждении тканевых базофилов из них выделяются биологически активные вещества следующими способами:
   1) с помощью выделения гранул – дегрануляцией;
   2) с помощью диффузного выделение через мембрану гистамина, который повышает сосудистую проницаемость и вызывает гидратацию основного вещества, усиливая тем самым воспалительную реакцию.
   Тучные клетки принимают участие в иммунных реакциях. При попадании в организм некоторых чужеродных веществ плазмоциты синтезируют иммуноглобулины класса Е, которые затем адсорбируются на цитолемме тучных клеток. При повторном попадании в организм этих же антигенов на поверхности тучных клеток образуются иммунные комплексы «антиген – антитело», которые вызывают резкую дегрануляцию тканевых базофилов, а выделяющиеся в большом количестве биологически активные вещества обусловливают быстрое наступление аллергических и анафилактических реакций.
   Плазматические клетки (плазмоциты) являются клетками иммунной системы (эффекторными клетками гуморального иммунитета).
   Образуются плазмоциты из В-лимфоцитов при воздействии на них антигенных веществ.
   Большинство их локализуется в органах иммунной системы (лимфоузлах, селезенке, миндалинах, фолликулах), но значительная часть плазмоцитов распределяется в соединительной ткани.
   Функции плазмоцитов – синтез и выделение в межклеточную среду антител – иммуноглобулинов, которые подразделяются на пять классов.
   В плазмоцитах хорошо развит синтетический и выделительный аппарат. На электроннограммах плазмоцитов видно, что почти вся цитоплазма заполнена зернистой эндоплазматической сетью, кроме небольшого участка, который примыкает к ядру и в котором расположен пластинчатый комплекс Гольджи и клеточный центр. При изучении плазмоцитов под световым микроскопом при обычной гистологической окраске – гематоксилин-эозин, они имеют округлую или овальную форму, базофильную цитоплазму, эксцентрично расположенное ядро, содержащее глыбки гетерохроматина в виде треугольников (колесообразное ядро). К ядру прилежит бледно окрашенный участок цитоплазмы – «светлый дворик», в котором локализуется комплекс Гольджи. Число плазмоцитов отражает интенсивность иммунных реакций.
   Жировые клетки (адипоциты) содержатся в рыхлой соединительной ткани в неодинаковых количествах в разных участках тела и в разных органах.
   Функции жировых клеток:
   1) депо энергетических ресурсов;
   2) депо воды;
   3) депо жирорастворимых витаминов и др.
   Жировые клетки располагаются группами вблизи сосудов микроциркуляторного русла. При значительном скоплении они образуют белую жировую ткань. Адипоциты имеют характерную морфологию: почти вся цитоплазма заполнена одной жировой каплей, а органеллы и ядро отодвинуты на периферию. При спиртовой фиксации и проведением по батарее спиртов жир растворяется, и клетка приобретает форму перстня с печаткой, а скопление жировых клеток в гистологическом препарате имеет ячеистый, сотообразный вид. Выявляются липиды только после формалиновой фиксации гистохимическими методами – судан и осмий.
   Пигментные клетки (пигментоциты, меланоциты) – клетки отростчатой формы, содержащие в цитоплазме пигментные включения (меланин). Пигментные клетки не являются истинными клетками соединительной ткани, так как, во-первых, они локализуются не только в соединительной, но и в эпителиальной ткани, а во-вторых, они образуются не из мезенхимальных клеток, а из нейробластов нервных гребешков.
   Адвентициальные клетки локализуются в адвентиции сосудов. Они имеют вытянутую и уплощенную форму. Цитоплазма данных клеток слабо базофильна и содержит незначительное количество органелл. Одни авторы рассматривают адвентициальные клетки как самостоятельные клеточные элементы соединительной ткани, другие считают, что они являются источником для развития фибробластов, жировых и гладкомышечных клеток.
   Перициты – клетки, локализующиеся в стенках капилляров – в расщеплении базальной мембраны.
   Лейкоциты – лимфоциты и нейтрофилы. В норме в соединительной ткани обязательно содержатся в различных количествах клетки крови – лимфоциты и нейтрофилы. При воспалительных состояниях количество их резко увеличивается (лимфоцитарная и лейкоцитарная инфильтрация).
   Межклеточное вещество соединительной ткани
   Оно состоит из двух структурных компонентов:
   1) из основного (или аморфного) вещества;
   2) из волокон.
   Основное (или аморфное) вещество состоит из белков и углеводов. Белки представлены в основном коллагеном, а также альбуминами и глобулинами.
   Углеводы представлены полимерными формами, в основном гликозаминогликанами (сульфатированными – хондроитинсерными кислотами, дерматансульфатом и др.)
   Углеводные компоненты удерживают воду, в зависимости от содержания воды ткань может быть более или менее плотной.
   Аморфное вещество обеспечивает транспорт веществ из крови клеткам и обратно, в том числе транспорт из соединительной ткани в эпителиальную.
   Аморфное вещество образуется за счет деятельности прежде всего фибробластов – коллагенов и гликозаминогликанов, а также за счет веществ плазмы крови – альбуминов и глобулинов.
   В зависимости от концентрации воды основное аморфное вещество может быть более или менее плотным, что и определяет функциональную роль данной разновидности ткани.
   Волокнистый компонент представлен коллагеновыми, эластическими и ретикулярными волокнами. В различных органах соотношение названных волокон неодинаково: в рыхлой волокнистой соединительной ткани преобладают коллагеновые волокна.
   Коллагеновые волокна имеют различную толщину (от 1 – 3 до 10 и более мкм). Они обладают высокой прочностью и малой растяжимостью. Каждое коллагеновое волокно состоит из двух химических компонентов:
   1) фибриллярного белка коллагена;
   2) углеводного компонента – гликозаминогликанов и протеогликанов.
   Оба данных компонента синтезируются фибробластами и выделяются во внеклеточную среду, где и осуществляется их сборка и построение волокна.
   
Купить и читать книгу за 199 руб.

Вы читаете ознакомительный отрывок. Если книга вам понравилась, вы можете купить полную версию и продолжить читать